

3D Maps – from geometry to semantics

(and the application thereof)

Kai Lingemann

Deputy Head of the group Plan-Based Robot Control (PBR) Osnabrück

Part I

map generation: a step towards environment understanding

Kai Lingemann / Research Fellow presentation / 7.12.2022

Plan-Based Robot Controll 2 / many

- Localization within a given map: √
 Mapping in case of stable localization: √
 Neither a-priori map nor localization is given: X
- Solution:

SLAM (simultaneous localization and mapping) [CML (concurrent mapping [and] localization)]

 Generally based on: Scan registration

Scan registration

Iterative Closest Point (ICP) algorithm

- For prior point set *M* ("model set") and "data set" *D*:
 - **1.** Select point correspondences $w_{i,j}$ in {0,1}
 - 2. Iteratively minimize for rotation **R**, translation **t** $E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N_m} \sum_{j=1}^{N_d} w_{i,j} ||\mathbf{m}_i - (\mathbf{R}\mathbf{d}_j + \mathbf{t})||^2$
 - **3.** transform *D*, back to **1**., until convergence
- works in 3 translation plus 3 rotation dimensions (6 DoF)
- registration of 2 3D scans with 100.000 points: 1 sec

Scan registration (example)

Constraint network – idea in 2D

Globally consistent 3D maps

- Extension to 3D
- Allows arbitrary graph topology
- Edges: weighed by covariance
- Innovation price for free software

Example of a global optimization – poses

Example of a global optimization – scans

Kai Lingemann / Research Fellow presentation / 7.12.2022

Part II

industry application / system development

Kai Lingemann / Research Fellow presentation / 7.12.2022

Plan-Based Robot Controll 12 / many

System: MEYER WERFT

System: MEYER WERFT

System: Robocup Rescue

Further applications

(in charge: Thomas Wiemann)

Kai Lingemann / Research Fellow presentation / 7.12.2022

Part III

adding semantics...

Kai Lingemann / Research Fellow presentation / 7.12.2022

Plan-Based Robot Controll 17 / many

From sensor data to semantic maps

(from: Mobile Roboter – Eine Einführung aus Sicht der Informatik. Joachim Hertzberg, Kai Lingemann, Andreas Nüchter)

(in charge: Sven Albrecht)

Kai Lingemann / Research Fellow presentation / 7.12.2022

Part IV

further development / current projects

Kai Lingemann / Research Fellow presentation / 7.12.2022

Plan-Based Robot Controll 20 / many

Further develoments in our group:

- Object recognition (many projects, mostly agricultur usecases)
- Localization + map building
 - Search & Rescue, incl. SLAM (research & industry)
 - Long term autonomy (e.g., a robot on a field)
- Planning & Reasoning (projects that require some kind of "understanding" of the environment)

Some current projects from that realm...

