

Intelligent assistance through Formal Logic, Management of Change, Intuitive Interfaces ... and Beyond

Dr. Serge Autexier

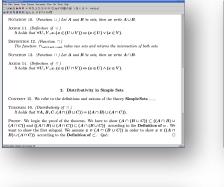
Bremen Ambient Assisted Living Lab Research Department Cyber-Physical Systems (CPS)

German Research Centre for Artificial Intelligence (DFKI) Bremen site

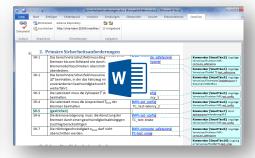
Serge.autexier@dfki.de www.dfki.de/~serge

http://www.dfki.de/cps

What this talk is about



Familiar/intuitive user interfaces



How to enable

- intelligent assistance based on rule based/formal logical reasoning directly
- through/inside familiar/intuitive user interfaces

Application in Mathematics

- Support mathematician and/or mathematics students in authoring mathematical documents
- Check definitions and notation
- For proofs
 - Verify proofs
 - Complete proofs
 - Provide more details (explanations)
 - Provide hints
- Project
 - OMEGA (SFB 378, 2005 2007)

👂 exampledynamic.tm 🍭	
	Document View Go Tools Help
	Q Q Q G I 1 % # 1 ↓ \$ ↓ & ↓ k RL PLATQ ✔
김희희희희 분들을	
NOTATION 10.	(Function \cup) Let A and B be sets, then we write $A \cup B$.
($egin{array}{lll} efinition \ of \ \cup \) \ t orall oldsymbol{V}, oldsymbol{x}. (oldsymbol{x} \in oldsymbol{U}) ightarrow (oldsymbol{x} \in oldsymbol{U}) ee (oldsymbol{x} \in oldsymbol{V}). \end{array}$
	2. (Function \cap) $n \cap_{set \times set \to set}$ takes two sets and returns the intersection of both sets.
NOTATION 13.	(Function \cap) Let A and B be sets, then we write $A \cap B$.
($egin{array}{lll} efinition \ of \ \cap \) \ t \ orall oldsymbol{U}, oldsymbol{V}, oldsymbol{x}. (oldsymbol{x} \in oldsymbol{U}) \Leftrightarrow (oldsymbol{x} \in oldsymbol{U}) \wedge (oldsymbol{x} \in oldsymbol{V}). \end{array}$

2. Distributivity in Simple Sets

CONTEXT 15. We refer to the definitions and axioms of the theory Simple Sets $_{local}$.

THEOREM 16. (Distributivity of \cap) It holds that $\forall A, B, C.(A \cap (B \cup C)) = ((A \cap B) \cup (A \cap C)).$

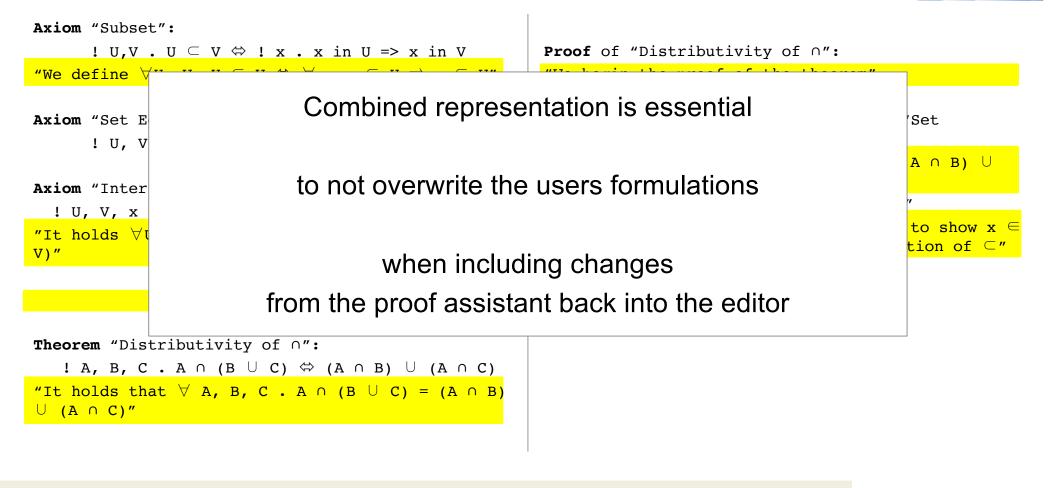
PROOF. We begin the proof of the theorem. We have to show $(A \cap (B \cup C)) \subset ((A \cap B) \cup (A \cap C))$ and $((A \cap B) \cup (A \cap C)) \subset (A \cap (B \cup C))$ according to the **Definition of** = . We want to show the first subgoal. We assume $x \in (A \cap (B \cup C))$ in order to show $x \in ((A \cap B) \cup (A \cap C))$ according to the **Definition of** \subset . Qed.

ticle plato menus text roman 10

Transforming Editor Syntax into Proof Assistant Syntax

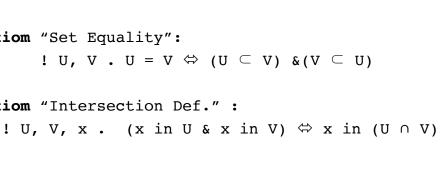
[프릴프트 회][드는	E S V S NA
NOTATION 10	. (Function \cup) Let A and B be sets, then we write $A \cup B$.
($\begin{array}{l} \text{Definition of } \cup \) \\ \text{at } \forall \boldsymbol{U}, \boldsymbol{V}, \boldsymbol{x}. (\boldsymbol{x} \in (\boldsymbol{U} \cup \boldsymbol{V})) \Leftrightarrow (\boldsymbol{x} \in \boldsymbol{U}) \lor (\boldsymbol{x} \in \boldsymbol{V}). \end{array}$
	2. (Function \cap) on $\cap_{set \times set \to set}$ takes two sets and returns the intersection of both sets.
NOTATION 13	. (Function \cap) Let A and B be sets, then we write $A \cap B$.
($\begin{array}{l} \text{Definition of } \cap \) \\ \text{at } \forall U,V,x.(x \in (U \cap V)) \Leftrightarrow (x \in U) \land (x \in V). \end{array}$
	2. Distributivity in Simple Sets
Context 15	We refer to the definitions and axioms of the theory $\mathbf{Simple Sets}_{local}.$
	$\begin{array}{l} (Distributivity \ of \ \cap \)\\ at \ \forall A, B, C. (A \cap (B \cup C)) = ((A \cap B) \cup (A \cap C)). \end{array}$
Proof. We l	begin the proof of the theorem. We have to show $(A \cap (B \cup C)) \subset ((A \cap B) \cup (A \cap B) \cup (A \cap C)) \subset (A \cap (B \cup C))$ according to the Definition of = . We

Combined Editor and Formal Representation



Application in Mathematics

completyments File Edit Inset Text Format Document View Go Tools Help C 日日 今の X X 日白 ひ 日 の 回 回 の グ 回日 オ 目 ク 多 ウ 没 用 Inset E 三 玉 三 玉 三 玉 三 玉 三 玉 三 玉 三 玉 二 日 A and B be sets, then we write A ∪ B. A OTATION 10. (Function ∪) Let A and B be sets, then we write A ∪ B.	Axiom "Subset": ! U,V . U \subset V \Leftrightarrow ! x . x in U => x in V
AXIOM 11. (Definition of \cup) It holds that $\forall U, V, x.(x \in (U \cup V)) \Leftrightarrow (x \in U) \lor (x \in V)$. DEFINITION 12. (Function \cap) The function $\cap_{set \times set \to set}$ takes two sets and returns the intersection of both sets. NOTATION 13. (Function \cap) Let A and B be sets, then we write $A \cap B$. AXIOM 14. (Definition of \cap) It holds that $\forall U, V, x.(x \in (U \cap V)) \Leftrightarrow (x \in U) \land (x \in V)$.	Axiom "Set Equality": ! U, V . U = V \Leftrightarrow (U \subset V) &(V \subset U) Axiom "Intersection Def." : ! U, V, x . (x in U & x in V) \Leftrightarrow x in (U \cap V)
2. Distributivity in Simple Sets	Theorem "Distributivity of \cap ": ! A, B, C . A \cap (B \cup C) \Leftrightarrow (A \cap B) \cup (A \cap
THEOREM 16. (Distributivity of \cap) It holds that $\forall A, B, C.(A \cap (B \cup C)) = ((A \cap B) \cup (A \cap C)).$ PROOF. We begin the proof of the theorem. We have to show $(A \cap (B \cup C)) \subset ((A \cap B) \cup (A \cap C))$ and $((A \cap B) \cup (A \cap C)) \subset (A \cap (B \cup C))$ according to the Definition of = . We want to show the first subgoal. We assume $x \in (A \cap (B \cup C))$ in order to show $x \in ((A \cap B) \cup (A \cap C))$ according to the Definition of \subset . Qed.	Proof of "Distributivity of \cap ": Subgoals A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C) by "Set Equa Assume x in A \cap (B \cup C) from "Subset".



```
\subset (A \cap B) \cup (A \cap C) by "Set Equality":
A \cap (B \cup C) from "Subset".
```


Handling inside Theorem Prover

Axiom "Subset": ! U,V . U \subset V \Leftrightarrow ! x . x in U => x in V	Axiom "Subset": ! U,V . U \subset V \Leftrightarrow ! x . x in U => x in V
Axiom "Set Equality": ! U, V . U = V \Leftrightarrow (U \subset V) &(V \subset U)	Axiom "Set Equality": ! U, V . U = V \Leftrightarrow (U \subset V) &(V \subset U)
Axiom "Intersection Def." :	Axiom "Intersection Def." :
! U, V, x . (x in U & x in V) \Leftrightarrow x in (U \cap V)	! U, V, x . (x in U & x in V) \Leftrightarrow x in (U \cap V)
Theorem "Distributivity of ∩":	Theorem "Distributivity of ∩":
! A, B, C . A ∩ (B \cup C) ⇔ (A ∩ B) \cup (A ∩ C)	! A, B, C . A \cap (B \cup C) \Leftrightarrow (A \cap B) \cup (A \cap C)
Proof of "Distributivity of ∩":	Proof of "Distributivity of ∩":
Subgoals	Subgoals
A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C) by "Set Equality":	: A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C) by "Set Equality":
Assume x in A \cap (B \cup C) from "Subset".	Assume x in A \cap (B \cup C) from "Subset"
	Fact x in A & x in (B U C) by "Intersection Def".
	Fact x in A & (X in B \mid x in C) by "Union Def"

Application in Mathematics

File Edit Insent Text Format Document View Go Tools Help 다 아마 타 아이 전 A A R 아이 그 것 같 아이 비 가 봐 아이 가 있 것 않 지 PLATEA 서 도 프 프 및 프 프 회 田仁 남, 5 S V S Na 開

NOTATION 10. (Function \cup) Let A and B be sets, then we write $A \cup B$.

AXIOM 11. (Definition of \cup) It holds that $\forall U, V, x.(x \in (U \cup V)) \Leftrightarrow (x \in U) \lor (x \in V)$.

DEFINITION 12. (Function \cap) The function $\cap_{set \times set \to set}$ takes two sets and returns the intersection of both sets.

NOTATION 13. (Function \cap) Let A and B be sets, then we write $A \cap B$. AXIOM 14. (Definition of \cap)

It holds that $\forall U, V, x. (x \in (U \cap V)) \Leftrightarrow (x \in U) \land (x \in V).$

2. Distributivity in Simple Sets

Context 15. We refer to the definitions and axioms of the theory $\mathbf{Simple Sets}_{\text{local}}.$

THEOREM 16. (Distributivity of \cap) It holds that $\forall A, B, C. (A \cap (B \cup C)) = ((A \cap B) \cup (A \cap C)).$

PROOF. We begin the proof of the theorem. We have to show $(A \cap (B \cup C)) \subset ((A \cap B) \cup (A \cap C)) \subset (A \cap (B \cup C))$ according to the Definition of =. We want to show the first subgoal. We assume $x \in (A \cap (B \cup C))$ in order to show $x \in ((A \cap C)) \cup (A \cap C))$ according to the Definition of \subset . Qed.

Axiom "Subset":

! 0,V . 0 ⊂ V അ !! ж. . ж.iah U ⇒> xxiah V

Axion "Set Denshity": $U, V : U = V \Leftrightarrow (U \subseteq V)$, $d(W \subseteq U)$

Axion "韩轻轻轻轻结动,轻昏,": !U,V,X: (秋 站,U & 朱 站,V) 戀 * * ih (忉 ∩ V)

Section "Distributivity in Simple Sets"

! A, B, C . A \cap (B \cup C) \Leftrightarrow (A \cap B) \cup (A \cap C) Theorem "Distributivity of \cap ":

Proof $A_{0f}B_{''}D_{ist}^{A}b\hat{l}t$ (B_{i} H_{j} G_{f} $H_{''}$ ($A \cap B$) \cup ($A \cap C$) Subgoals

Proof of "Bistributivity of (A"A C) by "Set Equality": "We begin the proof of the theorem"

Fact x in A & x in (B U C) by "Intersection Def". Fact x in A & (X in B \mid x in C) by "Union Def"

Axion "Subset": ! U,V . W ⊂ W ⇔ !! x .. x iin W ⇒> x iin W

Axiom "Set Equality": ! U, V . U = V ↔ ((U ⊂ W)) &((W ⊂ U))

Axion "Intersection Def." : ! U, V, x . (x in U & x in W) ⇔ x in (U ∩ W)

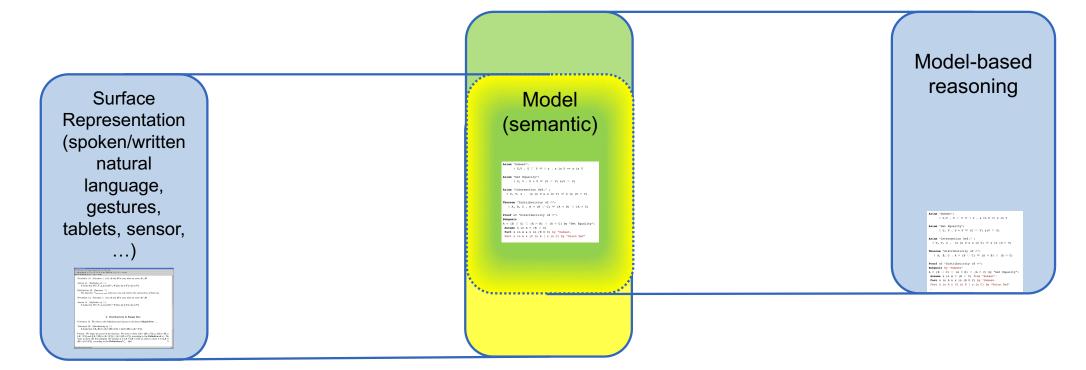
Theorem **Distributivity of パ**: ! A, B, C. A A (地 世 む) ※ (ね ハ む) し (ね い な)

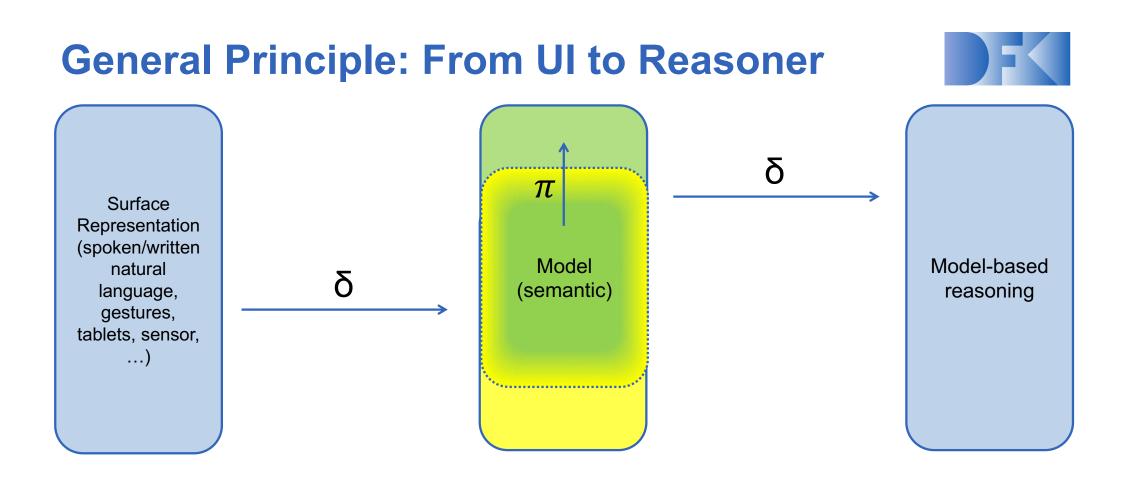
Preef of "Distributivity of n". Subgeals

Push relevant changes

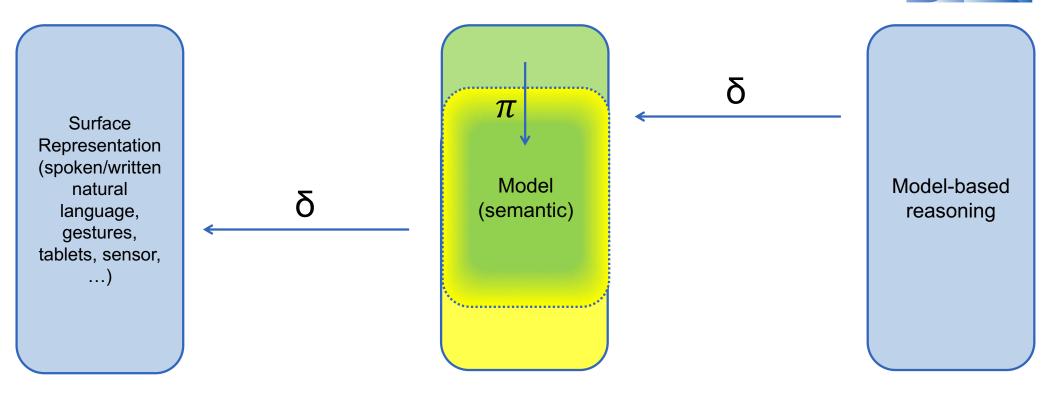
↓ Propagate Changes Push relevant changes

General Principle





General Principle: From Reasoner to UI



Services offered by Proof Assistant

😰 example-dynamic.tm 🎱		×
File Edit Insert Text Format Document View Go Tools Help		
C 🕀 🖬 🖶 🏟 🛠 🕺 K 🕮 🖻 🗟 🗟 🕲 🐨 🥅 🥦 🖉 🖬 📕 🎝 🍣 ¢ 🎉 RL 🛛 PLATQ		
= = = = = = = = = = = = = = = = = = =		
I 1. Simple Sets		
This theory defines the basic concepts and properties of the Theory of Simple Sets.		
DEFINITION 1. (Type of Elements) First of all we define the type elem.		
DEFINITION 2. (Type of Sets) Then we define the type set.		
DEFINITION 3. (Function \in) The function $\in e_{\text{lem} \times \text{set} \to \text{bool}}$ takes an individual and a set and tells whether vidual belongs to this set.	that indi-	
NOTATION 4. (Function \in) Let x be an individual and A a set, then we write x is element of A , x is in A or A contains x .	$x \in A$,	
DEFINITION 5. (Function \subset) The function \subset set \times set \rightarrow bool takes the set and tells whether the first set is a subsecond set.	set of the	
NOTATION 6. (Function \subset) Let A and B be sets, then we write $A \subset B$.		
AXIOM 7. (Definition of \subset) It holds that $\forall U, V.(U \subset V) \Leftrightarrow (\forall x. (x \in U) \Rightarrow (x \in V))$.		
AXIOM 8. (Definition of =) It holds that $\forall U, V.(U = V) \Leftrightarrow (U \subset V) \land (V \subset U)$.		
DEFINITION 9. (Function \cup) The function $\cup_{set \times set \rightarrow set}$ takes two sets and returns the union of both sets.		
NOTATION 10. (Function \cup) Let A and B be sets, then we write $A \cup B$.		
AXIOM 11. (Definition of \cup)		∇
article plato menus text roman 10	before pl-doc	ument

Checking soundness of textbooks / articles

File Edit Insert Text Format Document View Go Tools Help	
1 10 10 11 10 10 10 10 10 10 10 10 10 10	
	12
	- 11
2. Distributivity in Simple Sets	
CONTEXT 15. We refer to the definitions and axioms of the theory Simple Sets $_{local}$.	
THEOREM 16. (Distributivity of \cap)	
It holds that $\forall A, B, C.(A \cap (B \cup C)) = ((A \cap B) \cup (A \cap C)).$	
PROOF. We begin the proof of the theorem. We have to show $(A \cap (B \cup C)) \subset ((A \cap B) \cup (A \cap C))$ Apply Inference \rightarrow Name	,
$ \begin{array}{c} \rightarrow \text{Logic} \\ \rightarrow \text{Definition of } \subset \\ \rightarrow \text{Definition of } = \end{array} \text{ and } ((A \cap B) \cup (A \cap C)) \subset \\ \begin{array}{c} \text{Apply Strategy} \end{array} $:
$(A \cap (B \cup C))$ according to the Definition of = . Qed.]
T	
article plato menus text roman 10	start

Interactive proof assistance inside the editor

In Situ Explanations from Proof Assistant

Introduction to Algebra Thomas H.

1 Logic

2 Classes and Sets

In Gödel-Bernays form of axiomatic set theory, which we shall follow, the primitive (undefined) notions are **class**, **membership**, and **equality**. Intuitively, we consider a class to be a collection *A* of objects (elements) such that given any object *x* if it is possible to determine whether or not *x* is a member (or element) of *A*. We write $x \in A$ for "*x* is an element of *A*" and $x \notin A$ for "*x* is not an element of *A*".

[...]

The **axiom of extensionality** asserts that two classes with the same elements are equal (formally, $[x \in A \Leftrightarrow x \in B] \Rightarrow A = B$).

A class *A* is defined to be a **set** if and only if there exists a class *B* such that $A \in B$. Thus a set is a particular kind of class. A class that is not a set is called a **proper class**. Intuitively the distinction between sets and proper classes is not too clear. Roughly speaking a set is a "small" class and a proper class is exceptionnally "large". The **axiom of class** formation asserts that for any statement P(y) in the first-order predicate calculus involving a variable *y*, there exists a

class *A* such that $x \in A$ if and only if *x* is a set and the statement P(x) is true. We denote this class *A* by $\{x \mid P(x)\}$.

[...] A class A is a **subclass** of a class B (written $A \subset B$) provided:

for all $x \in A, x \in A \Rightarrow x \in B$.

By the axioms of extensionality and the properties of equality $^{\ensuremath{\textit{Details}}}$

 $A = B \Leftrightarrow A \subset B$ and $B \subset A$

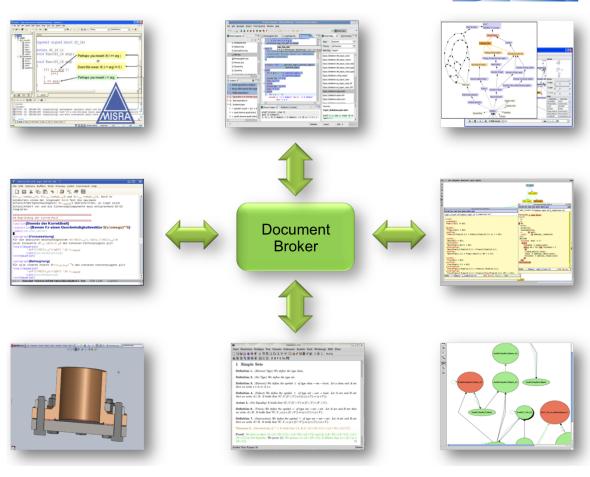
Details We first prove $A = B \Rightarrow A \subset B$ and $B \subset A$: Assume (h) A = B, then we have to prove (1) $A \subset B$ and (2) $B \subset A$: For (1), assuming $x \in A$, we conclude $x \in B$ from (h) and properties of equality. For (2), assuming $x \in B$, we conclude $x \in A$ from (h) and properties of equality. Conversely, we prove $A \subset B$ and $B \subset A \Rightarrow A = B$: By Definition of \subset we know from $A \subset B$ and $B \subset A \Rightarrow A = B$: By Definition of \subset we know from $A \subset B$ and $B \subset A \Rightarrow A = B$: By Definition of \subset we know from $A \subset B$ and $B \subset A \Rightarrow A = B$: By Definition of \subset we know from $A \subset B$ and $B \subset A \Rightarrow A = B$: By Definition of \subset we know from $A \subset B$ and $B \subset A \Rightarrow A = B$. \Box

4 Functions

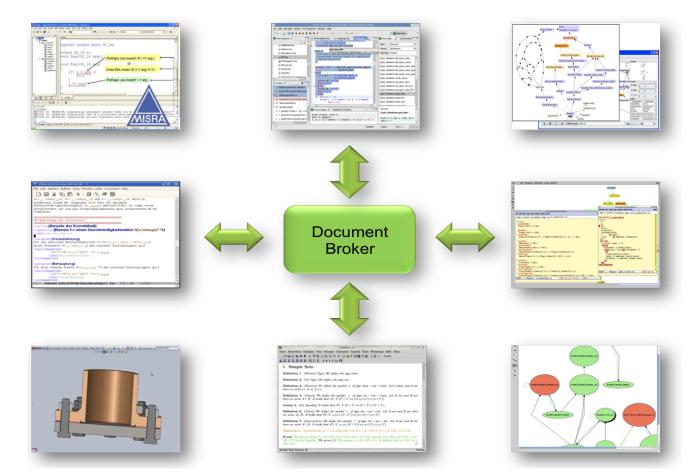
FormalSafe

Project FormalSafe (BMBF 2008 – 2010)

- Formal Methods Tools
 - Heterogeneous specification and system
 - Proof support through VSE
- Document centered development
 - Integration of formal and informal development documents
 - Dependencies and traceability
- Management of change
 - Evolutionary (agile) development
 - Formal integrity



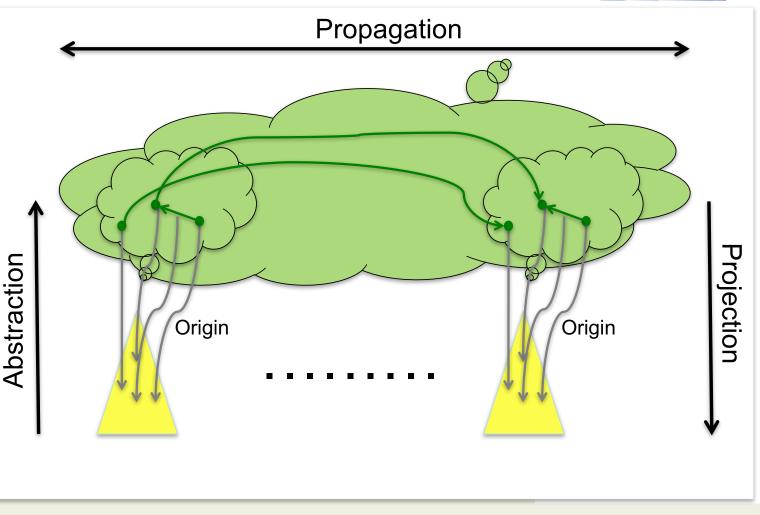
FormalSafe Broker aka DocTIP



Universität Bremen

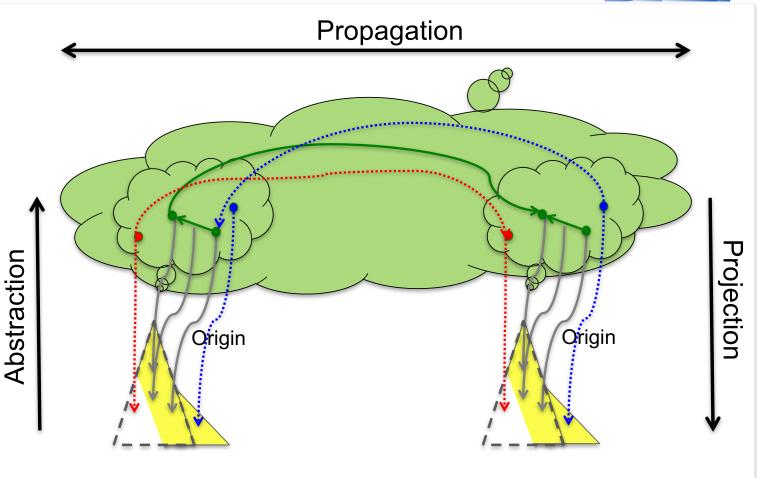
Related multiple documents

- Different types of documents
- Different types of reasoner syntaxes
- Automatically establish and maintain combined representations



Related multiple documents

- Different types of documents
- Different types of reasoner syntaxes
- Automatically establish and maintain combined representations
- Propagate changes from one document or reasoner to all other documents and reasoner

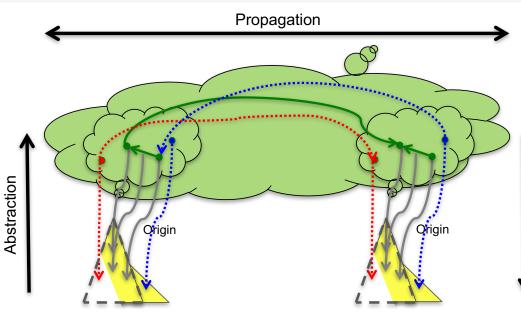


Parameterized Change Management

- Semantic Difference Analysis
 - Parameterized over document type specific similarity specifications
- Change Propagation
 - Representation of syntactic and semantic document parts as typed graphs
 - Parameterized over Document Specific Propagation rules (as graph rewriting rules)

Right methodology, bad scalability

Copyright 2017, Dr. Serge Autexier, DFKI GmbH 20



Projection

FormalSafe Applications

Application: Formal Verification of C Programs

&& w < sams config.brkdist.measurements[0].v

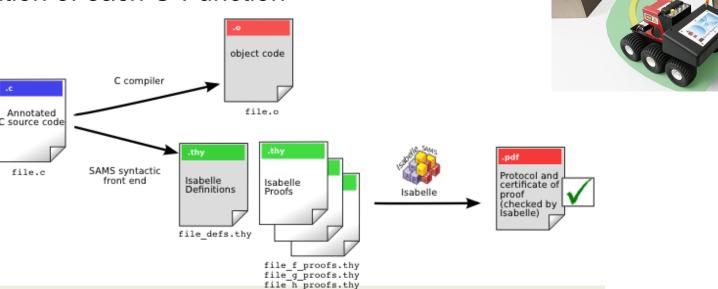
&& sams config.brkdist.measurements[\result-1].v > w

&& w >= sams config.brkdist.measurements[\result].v

&& \result < sams config.brkdist.length

&& brkconfig_OK(sams_config)

- SAMS: Formal Verification of MISRA C programs
 - annotated by preconditions, postconditions and modification information
- Used to verify algorithm computing safety zone
- Modular verification of each C-Function



/*@ @requires 0 <= w

@*/

@modifies \nothing
@ensures 0 < \result</pre>

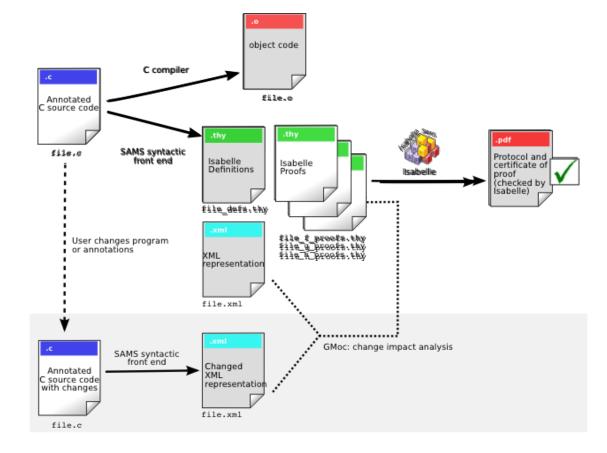
Int32 bin search idx v(Float32 w);

Workflow

Application: Formal Verification of C Programs

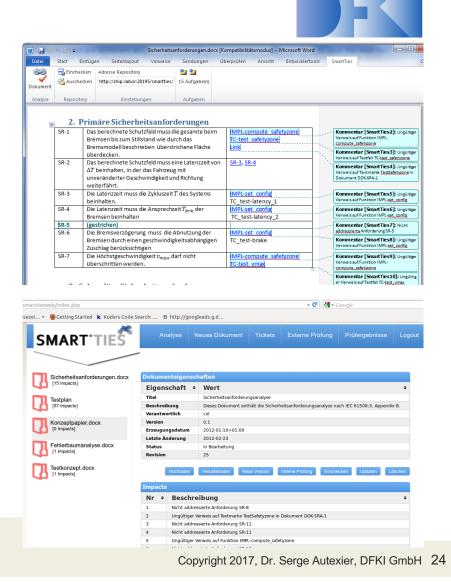
Goal

- Avoid having to reprove everything upon each change
- Determine proofs affected by changes in source code and/or annotations



Application: SmartTies

- Development of Safety-Critical Systems (e.g. IEC 61508) demands a variety of documents
 - Concept Paper
 - Software Failure Modes and Effects Analysis
 - Safety Requirement Specification
 - Test Plans (tables)
 - Test Suites
 - Implementation
- SmartTies tool aims to maintain these documents in a consistent way



W		5	*	Ű	0	Ŧ
---	--	---	---	---	---	---

Start

Datei

Fehlerbaumanalyse.docx [Kompatibilitätsmodus] - Microsoft Word

Einfügen Seitenlayout Verweise Sendungen Überprüfen Ansicht SmartTies

Fehlerbaumanalyse

٧

W

Zusammenfassung

0

e

-

Dieses Dokument enthält eine Fehlerbaumanalyse für das Projekt OmniProtect

Projekt	OmniProtect	
Dokument-ID	DOK-HA-1	
Verantwortlich	Christoph Lüth (cxl)	
Erstellt am	09.01.2012	
Version	1.0	
Bearbeitungszustand	i.B.	
Revision	76	
Letzte Änderung	13.04.2012	
Dokumentenablage	OmniProtect/Fehlerbaumanalyse.docx	

•

23

♥ ?

=

* #

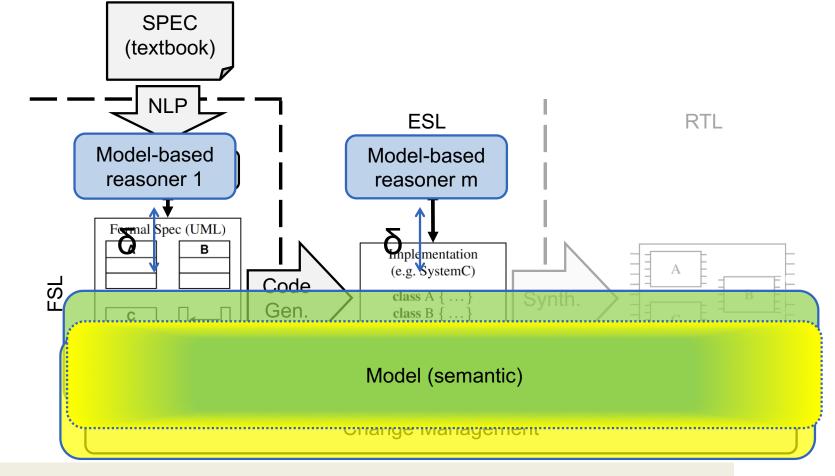
Application: Specific (BMBF 2013 – 2016)

Specific:

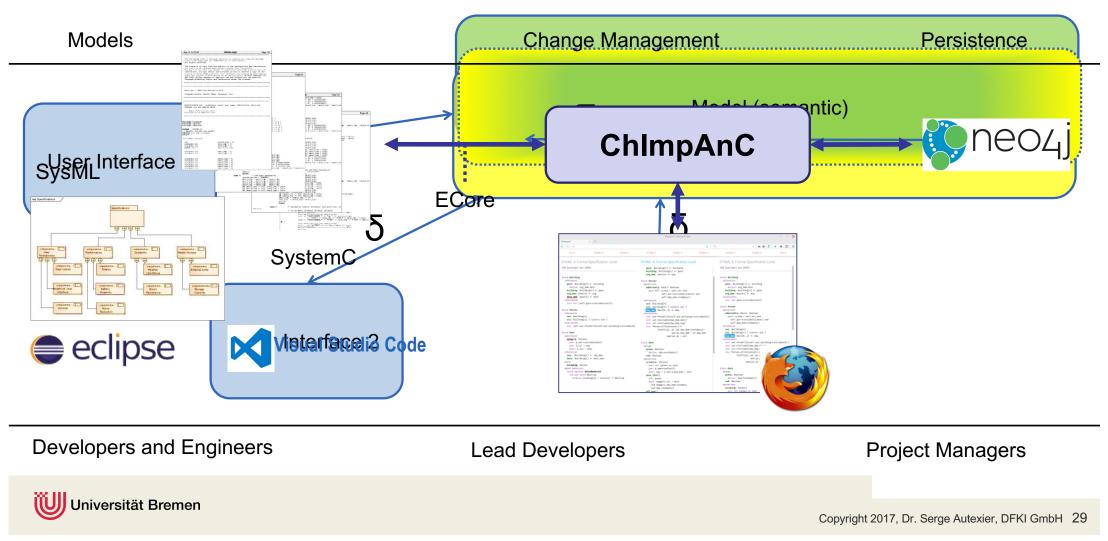
Quality-Driven Design Flow using Formal Specification and Functional Change Management

 Support and maintain system development from natural language specifications down to System Level

SPECifIC Design Flow



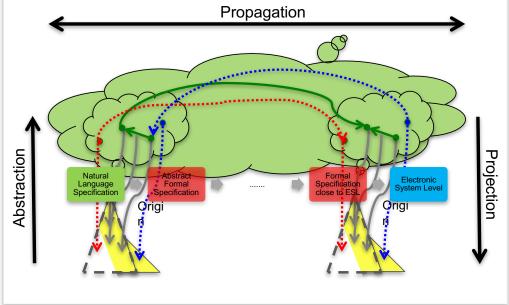
CM Tool Architecture



Tool Support for Change Management

- Explicit semantics approach:
 - represent syntax and semantics
 - Uniform representation by typed graphs
 - Graphs stored in **neo4j** graph database
- Change impact analysis:
 - Semantic difference analysis
 - Analysis and propagation of changes
 - Implemented natively in neo4j
- Enhancement of work in FormalSafe
 - but different implementation

Still right methodology, now also scalable, robust

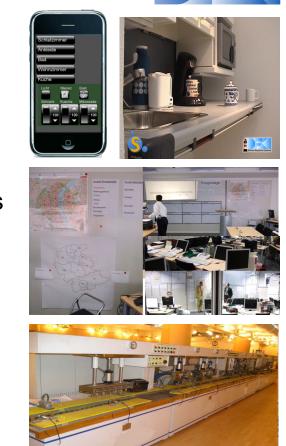


Project SHIP (BMBF 2011 – 2013)

SHIP: Semantic Integration of Heterogeneous Processes

Research question

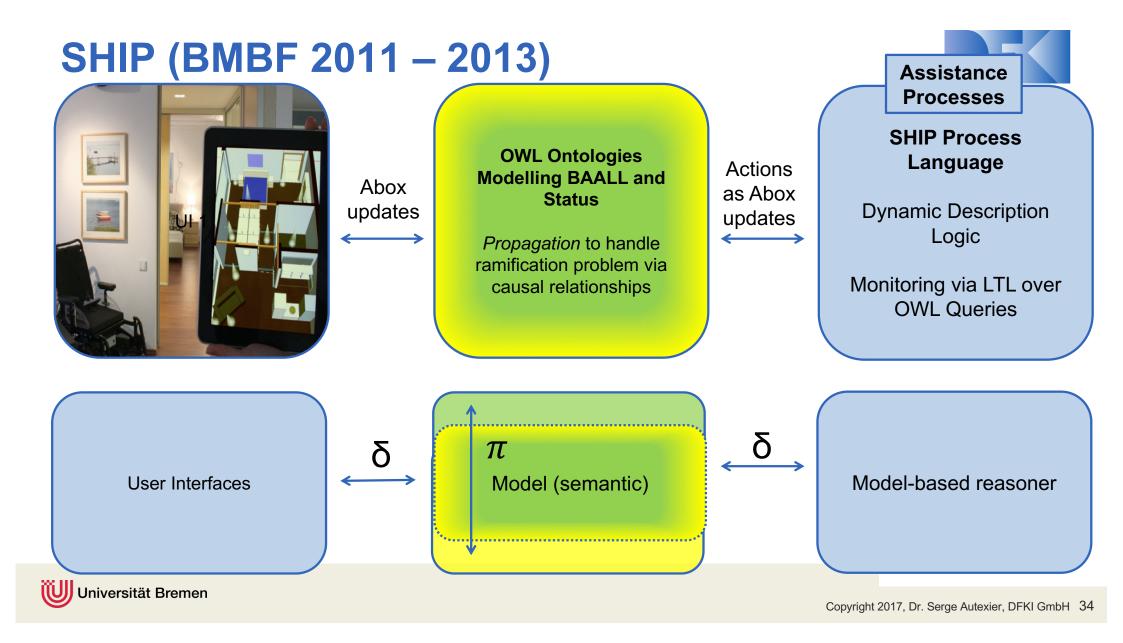
- How to orchestrate individual, highly specialized systems
 - Individual systems, with individual process and data models
 - Individual systems operating on different abstraction levels
 - Combination of process-oriented view with non-trivial data models



Application: Assistance Processes @ Home

- Automate assistance for specific activities of daily living
 - Cooking, reading, dressing up, ...
 - Reduce energy consumption, Comfort
 - Medical assistance, Safety
- Flexible, adaptive, interruptible
- Many persons, many goals
- Many assistance processes simultaneously
- How to achieve robustness and safety?

Development of an ontology-based process description language (SHIP) to **orchestrate** and **monitor** environment and devices



Application Example

- Multiple persons, multiple automatic wheelchairs
- Organisational Layer as Assistance Process
 - Handle transportation requests from individuals until completion
 - open blocking doors, illuminate dark portions of the path
 - Avoid wheelchairs hindering each other

Application: Coordinate Rolland and AILA

Common scenario to demonstrate work from CAPIO and SHIP

Person wearing an exoskeleton wants a scarf. Rolland and AILA are used to bring the scarf to the person. The person assists AILA in grabbing the scarf using the exoskeleton to remotely control AILA.

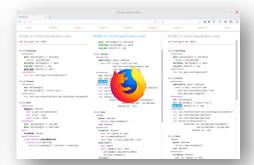
SHIP Tool is used to

- receive requests
- know where the scarf is
- indicate the right shelf to AILA by blinking light
- send Rolland to the pickup position and then to the person
- control light and door during rides (as usual)

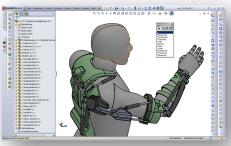
What this talk was about so far

the Eds Intern True Document View Go Tails Selp	Rie Edit Navigate Project Proof
金融会会会社 X 88312333 日本 日本市 10番目目 2 多く 8 × 14492 ml	
NOTATION 10. (Function \cup) Let A and B be sets, then we write $A \cup B$.	
$\begin{split} & \text{Axxxx} 11, \text{Definition of } \cup \\ & \text{Relation } 0 \\ & \text{Relation } 0 \\ & \text{Relation } 0 \\ & \text{Determinents}, \text{Relation } 0 \\ & \text{Determinents}, \text{Relation relations are stated relations the intersection of both sets.} \\ & \text{NOTATION 13}, \left(\text{Postelium } 0 \\ & \text{Relation } 0 \\ & Relation$	Interspectra by Interspectra
2. Distributivity in Simple Sets	Cutime II S Cutime II S Cutime II S Cutime II
CONTEXT 15. We refer to the definitions and axioms of the theory Simple Sets lineal.	 e theory PER imports Main begin ▷ <
THEOREM 16. (Distributivity of \cap) It holds that $\forall A, B, C. (A \cap (B \cup C)) = ((A \cap B) \cup (A \cap C)).$	C Equivalence on function space C Total equivalence
Proces: We begin the proof of the theorem. We have to show $(A \cap \{B \cup C\}) \subset (A \cap B) \cup (A \cap C) \subseteq (A \cap B) \cup (A \cap C) \cap (A \cap B \cup C)$ so where the theorem is the Delinition of — We some to show the first subgal. We assume $x \in (A \cap (B \cup C))$ is order to show $x \in ((A \cap B) \cup (A \cap C))$ scoring to the Definition of \subset . Qed.	
	•

Familiar/intuitive user interfaces







Datei	Start E	infügen Seitenlayout Verweise	Sendungen I	Jberprüfen	Ansidht	Entwiddento	ols	SnartTies	
62	Eincher		22						
kument	Austhe	cken http://ship-labor.28195/smartties/	15 Aufgabe(n)						
lanahse	Reposito	ry Einstellungen	Aufgaben						
æ	2. F	Primäre Sicherheitsanfor Das berechnete Schutzfeld muss o Bremsen bis zum Stillstand wie du Bremsmodel beschrieben überst	die g	T	de sale traond	thranel		Verweisauft compute_as	
	58-2	Oberdecken. Das berechnete Schutzfeld muss e						Kommenta Verweis auf	r (SmartTim3): Ungülige Festfell TC-best, saletszone
	58-2	Δ3 benechnete schutzreid muss e Δ7 beinhalten, in der das Fahrzeu, unveränderter Geschwindigkeit u weiterfährt.	g mi					Kommenfa Verweisauf Dokument D	er (SmartTics4): Ungültig Festivarie <u>Testialetssone</u> in OK684-1
	SR-3	Die Latenzzeit muss die Zykluszeit beinhalten.	T de		ncy 1				r (SmartTiesS): Ungülig funktion IVPLost_config
	SR-4	Die Latenzzeit muss die Ansprech Bremsen beinhalten	zeit T _{brik} der	TC_test-I				Kommenta Verweisauf	r (SmartTimoS): Ungültig Funktion IMPL-set_stanfig
1	5R-5	(gestrichen)		1					r (SmartTies7): Non
	SR-6 Die Bremsverzögerung muss die / Bremsen durch einen geschwindig Zuschlag berücksichtigen			TC_test-b				Kommenta	Anforderung 57-5 ir [SenartTies8]: Ungülige Funktion IVPL get_aactig
1	SR-7	Die Höchstgeschwindigkeit v _{max} d überschritten werden.	farf nicht	IMPL-com TC-test_w		tyzone)		Kommenta Verweiseuf compute aa	r (SmartTien9): Ungültig funktion IVPL-

How to enable

- intelligent assistance based on rule based/formal logical reasoning directly
- through/inside familiar/intuitive user interfaces

Current BAALL Projects

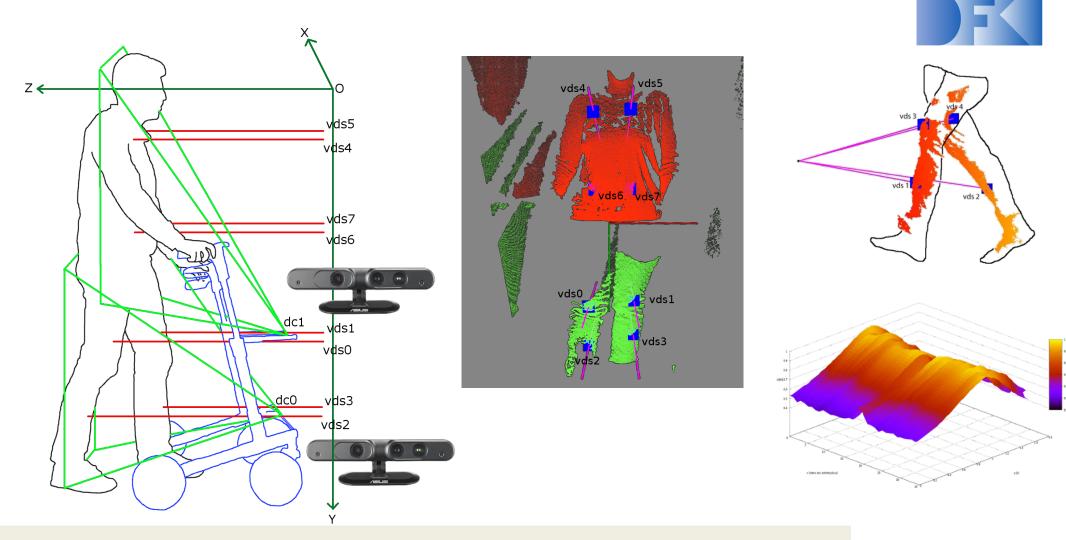
Project ModESt (1.2017-12.2019)

- Walker-Module for posture recognition and fall prevention
- Problem:
 - the correct use must be properly learned and practiced continuously
- Goal:
 - is to prevent latent poor postures and risk of falls.
- Solution:
 - distance sensors based with software to recognize poor postures
 - low-threshold feedback for posture corrections
 - in an electronic box integrated into the frame of the walker
- Funded by BMBF in program "Human-Machine-Interaction" in the scheme "Initiatives for SMEs"

Project Partners

BUDELMANN Elektronik GESUNDHEIT **NORD KLINIKVERBUND** BREMEN

Christian Mandel



Learned Classifier for typical geriatric gait properties

: ÷ 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 tf ptw sv sh sl hfr hfl kfr kfl 5gp 2gp dtw SS SW Universität Bremen

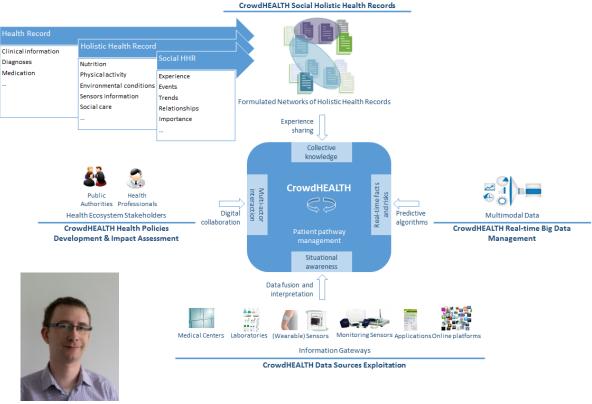
2 gait pattern (2gp) 5 gait pattern (5gp) position to walker (ptw) distance to walker (dtw) hip flection left (hfl) hip flection right (hfr) knee flection left (kfl) knee flection right (kfr) torso flection (tf) stride symmetry (ss) stride width (sw) stride variability (sv) stride length (sl) stride height (sh)

Project CrowdHEALTH (4.2017 - 3.2020) Collective wisdom driving public health policies

Decision support for public health policy makers based on integrated heterogeneous health data

Funded by EU in the *Call H2020-SC1-2016-CNECT "Personalised Medicine" through Grant 727560*

19 Partners



Jan Janssen

Project SMILE 4.2017 – 3.2020

... For an increasing proportion of women in Computer Science professions

"Smart Environments as a context of motivating learning opportunities for girls for a growing proportion of computer scientists by involving teachers and parents"

- For female scholars starting age of 12
- Awake and preserve interest in Computer Science
- Teach Computer Science concepts and methods

Funded by funded by the Federal Ministry for Education and Research within the support program for "Strategies for Achieving Equality of Opportunity for Women in Education and Research ("Success with MINT - New Opportunities for Women")" (FKZ 01FP1613)

Anke Königschulte

Summarizing ...

Formal Logic, Management of Change, Intuitive Interfaces in ...

- Project OMEGA (SFB 2005-2007)
- Project FormalSafe (BMBF 2008-2010)
- Project SHIP (BMBF 2011-2013)
- Project Specific (BMBF 2013-2016)

... and beyond

- Project ModEST (BMBF 2017-2019)
- Project CrowdHEALTH (EU 2017-2020)
- Project SMILE (BMBF 2017-2020)

Relevant publications on the main topic

Serge Autexier. *Similarity-Based Diff, Three-Way-Diff and Merge*, International Journal of Software and Informatics (IJSI) 9(2), August, 2015

Serge Autexier and Dieter Hutter. *SHIP - A Logic-Based Language and Tool to Program Smart Environments*, In Moreno Falaschi (Ed) Post-Proceedings 25th International Conference on Logic-Based Program Synthesis and Transformation (LOPSTR 2015), LNCS, Springer, October, 2015

Serge Autexier, Dieter Hutter, and Christoph Stahl. *An Implementation, Execution and Simulation Platform for Processes in Heterogeneous Smart Environments*, In Juan Carlos Augusto and Reiner Wichert (Ed) Fourth International Joint Conference on Ambient Intelligence, LNCS, Dublin, Ireland, Springer, December, 2013

Serge Autexier, Dieter Hutter, Christian Mandel, and Christoph Stahl. *SHIP-Tool Live: Orchestrating the Activities in the Bremen Ambient Assisted Living Lab (Demo)*, In Juan Carlos Augusto and Reiner Wichert (Ed) Fourth International Joint Conference on Ambient Intelligence, LNCS, Dublin, Ireland, Springer, December, 2013

Serge Autexier, Dominik Dietrich, Dieter Hutter, Christoph Lüth, and Christian Maeder. *SmartTies - Management of Safety-Critical Developments*, In Tiziana Margaria and Bernhard Steffen (Ed) Proceedings 5th International Symposium On Leveraging Applications of Formal Methods, Verification and Validation (ISoLa'12), LNCS, Amirandes, Heraclion, Crete, Springer, October, 2012

Serge Autexier and Dominik Dietrich and Marvin Schiller. *Towards an Intelligent Tutor for Mathematical Proofs*, In Pedro Quaresma and Ralph-Johan Back (Ed) Proceedings First Workshop on CTP Components for Educational Software (THedu'11), Vol. 79, EPTCS, p. 1-28, February, 2012

Serge Autexier, Catalin David, Dominik Dietrich, Michael Kohlhase, and Vyacheslav Zholudev. *Workflows for the Management of Change in Science, Technologies, Engineering and Mathematics*, In James H. Davenport, William Farmer, Florian Rabe, and Joseph Urban (Ed) Proceedings of Calculemus/MKM 2011, Nr. 6824 of LNAI, p. 164-179, Springer-Verlag Berlin Heidelberg, July, 2011

Serge Autexier and Normen Müller. Semantics-Based Change Impact Analysis for Heterogeneous Collections of Documents, In Michael Gormish and Rolf Ingold (Ed) Proceedings of 10th ACM Symposium on Document Engineering (DocEng2010), Manchester, UK, September, 2010

Serge Autexier and Christoph Lüth. Adding Change Impact Analysis to the Formal Verification of *C Programs*, In Dominique Méry and Stephan Merz (Ed) Proceedings 8th International Conference on integrated Formal Methods (IFM2010), LNCS, Nancy, France, Springer, October, 2010

Serge Autexier, Christoph Benzmueller, Dominik Dietrich, and Marc Wagner. *Organisation, Transformation, and Propagation of Mathematical Knowledge in OMEGA*, Journal Mathematics in Computer Science, 2008

Christoph Benzmüller, Dominik Dietrich, Marvin Schiller, Serge Autexier. *Deep Inference for Automated Proof Tutoring?*, In Joachim Hertzberg, Michael Beetz, Roman Englert (Ed) KI 2007: Advances in Artificial Intelligence, LNAI, Springer, September, 2007

Serge Autexier, Armin Fiedler, Thomas Neumann, and Marc Wagner. *Supporting User-Defined Notations when Integrating Scientific Text-Editors with Proof Assistance*, In Manuel Kauers, Manfred Kerber, Robert Miner, and Wolfgang Windsteiger (Ed) Towards Mechanized Mathematical Assistants, LNAI, Springer, June, 2007

Serge Autexier and Claudio Sacerdoti-Coen. A Formal Correspondence between OMDoc with Alternative Proofs and the LambdabarMuMutilde-Calculus, In Jon Borwein and Bill Farmer (Ed) Proceedings of MKM'06, Vol. 4108, LNAI, p. 67-81, Springer, August, 2006

Serge Autexier, Christoph Benzmüller, Armin Fiedler, Henri Lesourd. *Integrating Proof Assistants as Reasoning and Verification Tools into a Scientific WYSIWIG Editor*, In David Aspinall and Christoph Lüth (Ed) Proceedings of UITP'05, ENTCS, January, 2006

Jörg Siekmann, Christoph Benzmüller, and Serge Autexier. *Computer Supported Mathematics with OMEGA*, Journal of Applied Logic, special issue on Mathematics Assistance Systems 4(4), December, 2006

Serge Autexier, Christoph Benzmüller, Dominik Dietrich, Andreas Meier, and Claus-Peter Wirth. *A Generic Modular Data Structure for Proof Attempts Alternating on Ideas and Granularity*, In Kohlhase, Michael (Ed) Proceedings of MKM'05, Vol. 3863, LNAI, IUB Bremen, Germany, Springer, January, 2006

Serge Autexier and Armin Fiedler. *Textbook Proofs Meet Formal Logic - The Problem of Underspecification and Granularity*, In Kohlhase, Michael (Ed) Proceedings of MKM'05, Vol. 3863, LNAI, IUB Bremen, Germany, Springer, January, 2006

Thank you.

