
Time Series Similarity Search for Streaming Data in
Distributed Systems

Ariane Ziehn
DFKI GmbH, Germany
ariane.ziehn@dfki.de

Marcela Charfuelan
DFKI GmbH, Germany

marcela.charfuelan@dfki.de

Holmer Hemsen
DFKI GmbH, Germany
holmer.hemsen@dfki.de

Volker Markl
DFKI GmbH and TU Berlin, Germany

volker.markl@dfki.de

ABSTRACT
In this paper we propose a practical study and demonstration
of time series similarity search in modern distributed data pro-
cessing platforms for stream data. After an intensive literature
review, we implement a flexible similarity search application in
Apache Flink, which includes the most commonly used distance
measurements: Euclidean distance and Dynamic Time Warping.
For efficient and accurate similarity search we evaluate normal-
ization and pruning techniques developed for single machine
processing and demonstrate that they can be adapted and lever-
aged for those distributed platforms. Our final implementation is
capable of monitoring many time series in real-time and parallel.
Further, we demonstrate that the number of required parame-
ters can be reduced and optimally derived from data properties.
We evaluate our application by comparing its performance with
electrocardiogram data on a cluster with several nodes. We reach
average response times of less than 0,1 ms for windows of 2 s of
data, which allow fast reactions on matching sequences.

1 INTRODUCTION
Rakthanmanon et al. [18] demonstrate that they can find a given
pattern in a day-long electrocardiogram (ECG) tracing in 35 s
under Dynamic Time Warping (DTW). Their implementation
runs on a single machine and the data is a finite batch set that
is completely stored. Batch data sets and single machines en-
able the programmer to apply traditional optimization methods
to the algorithms, but nowadays batch data is often replaced
by data streams. In order to handle the increasing amount and
complex properties of data streams, open source frameworks for
distributed stream data processing (DSPS) have appeared. Yet,
many traditional optimization techniques can not be directly
applied to process data streams in distributed systems. Can we
still efficiently find frequent patterns in new real-life situations,
where the data is not stored but streamed? And how can we
leverage traditional optimization methods in modern DSPS?

In this paper we answer these questions and demonstrate that
we can match ECG patterns with high accuracy in data streams
with an average response time of less than 0,1 ms per window by
using modern DSPS. In particular, we employ the DSPS Apache
Flink [4], which can handle massive amounts of continuous data
and process them in real-time with low latency. Besides the addi-
tional monitoring effort of distributed systems, which is covered

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
Workshops of the EDBT/ICDT 2019 Joint Conference (EDBT/ICDT 2019) Lisbon,
Portugal, March 26, 2019.
ISSN 1613-0073 on CEUR-WS.org. Distribution of this paper is permitted under the
terms of the Creative Commons license CC-by-nc-nd 4.0.

by the frameworks, two other aspects need special attention
when developing streaming applications on distributed systems:
ordering and partitioning. These aspects are of particular impor-
tance for time series processing of the stream data in parallel jobs.
Current approaches on distance calculations between two time
series assume that the data is always ordered, according to the
time it is produced [1, 12]. This can not be assumed in distributed
systems, where data can reach the system with delays or in the
worst case samples might be lost. Additionally, the usage of a
distributed stream processing approach implies partitioning of
the task into independent subtasks for distributed and parallel
computing.

In the remainder of this paper, we present first of all the state-
of-the-art by exploring related work in Section 2. Afterwards, the
basic concepts for similarity search are summarized in Section 3.
The necessary edits to the traditional DTW algorithm for its
usage in distributed systems are explained in Section 4, which is
followed by the experiments conducted in this work in Section 5.
The conclusion in Section 6 sums up our achievements.

2 RELATEDWORK
As for many modern big data analytics applications, the under-
lying techniques used in this paper concern several fields. The
fields of main interest for our application are time series analy-
sis, similarity search, data streams and distributed systems. We
rarely find related work, which covers all of the four fields. One
close example is [7], where time series correlation analysis is per-
formed in the DSPS Apache Storm [5]. [7] faces similar problems
as we do, due to the usage of DSPS for time series analysis, but
considers a different analysis task. A second example is a naive
distributed implementation [19] that duplicates the data to all
cluster nodes. On each node, the data is matched to one of the
multiple patterns. The implementation uses no DSPS and mul-
tiple shuffles of the same data to several workers causes heavy
network traffic, if also multiple streams are analyzed. Thus, the
techniques of [19] can not be considered for our approach.

In fact, several works already attempt time series processing
and/or similarity search in modern DSPS, but most of them only
deal with batch instead of stream processing [1, 8]. Still, these
works need to handle distribution and present adapted techniques
for time series processing we can use for our application.

Regarding similarity search in streaming on single machines,
the exact matching of patterns is first tried on-line in a streaming
environment in [14]. The main focus of this approach is not only
the pattern matching but also its maintenance (as the pattern
might change over time). The conclusion of this work is that
both tasks, matching and maintenance, are feasible and can be
implemented efficiently in streaming environments and thus, are
considered for our approach.

Figure 1: Search for Q (red) in an ECG time series (blue)

Another common practice is the development and optimization
of batch processing algorithms for single machines [12, 15, 16].
But, single machines have limited scalability in terms of memory
and execution power, which make them cumbersome for real-
life, large scale streaming applications. Thus, these approaches
either not require low latency responses [18] or make use of
specialized hardware and/or hardware optimization to guarantee
high performance [10, 11, 13, 20]. Example optimization that can
be applied to DTW are independent matrix cell [20] or combined
normalization and distance calculations [18]. Many proposed
optimization made for single machines can not be efficiently
implemented or lead to processing delays in distributed systems
e.g. due to missing shared memory. Therefore, only a few selected
techniques can be considered for our application.

A detailed overview of single machine approaches and im-
plementations for similarity search in time series analysis is
presented in [16]. This work offers a deeper inside of common
search and matching methods combined with different optimiza-
tion proposed until 2011.

Similarities are matched and weighted by the usage of distance
measurements, which rank, how similar the compared sequences
are. Besides the classic Euclidean distance, DTW is an often rec-
ommended measurement for similarity search [3, 15, 16, 18].
Already in 1994, [2] illustrated the usage of DTW for time series,
which was previously used for speech recognition. Berndt and
Clifford [2] explain the algorithm and suggests further optimiza-
tion techniques. The most powerful pruning approach for DTW
is implemented in [18], where Rakthanmanon et al. make inten-
sive usage of a hierarchical lower bound pruning approach with
increasing computational expenses to prevent unnecessary ex-
pensive full DTW calculations. This pruning approach is mainly
considered for our implementation.

3 SIMILARITY SEARCH
Similarity search is a basic subtask for time series analytics such
as classification and clustering. Let us consider the ECG time
series example [17] in Figure 1. In this figure, the red pattern (Q)
is matched twice with sequences of the blue time series. To search
for patterns in long time series, it is usual to compare it against
subsequences of the series with similar length. From now on we
will refer to these subsequences as S . Similarity search can refer
either to the comparison of sequences in their shape or values,
where in time series processing, shape comparison is commonly
focused [1]. Due to the fact that the pattern is not necessarily
taken from the series, the scales of both might be different (see
value range in Figure 1). The scale difference needs to be handled
by normalization of each individual sequence, before attempting
any meaningful shape comparison.
Distances play an important role in similarity search. A classic

Figure 2: Distance matrix of DTW

one-to-one point distance is the Euclidean distance. In compari-
son to the one-to-many point distance DTW , the Euclidean dis-
tance is inflexible in handling shifts in time or amplitude. The
different behavior is visualized in Figure 2, where dark squares
indicate the point-to-point comparison of the Euclidean distance
and circles symbolize the DTW warping path. Further, a distance
value is denoted as D(Q, S) for the cumulative distance between
the pattern Q and sequence S . For the cumulative distance over
all ancestors until the two points qi and sj , where i and j indicate
the index of each point in Q and S , the notation d̂(qi , sj) is used.
The ancestor dependencies and the distance path through the
matrix can also be seen in Figure 2. The final outputs are the
remaining minimal DTW (Q, S). Keeping in mind that the Eu-
clidean distance (ED) is nothing else than a special case of DTW
with |Q | = |S |, both distances can be related with the triangle
inequality, which states that their final result has the following
property, proven in [15]:

DTW (S,Q) ≤ ED(S,Q)

The DTW distance matrix (Figure 2) is derived incrementally
row-by-row because of the dependencies within the cells. Its
calculation is the most expensive task of DTW [20], which is
why heavy pruning and path restriction strategies are applied to
reduce computation. In order to reduce the size of our DTW dis-
tance matrix, we use the Sakoe-Chiba Band [2, 18]. This warping
band restricts the warping path so that only cells, which are a
certain number of cells away from the diagonals, are considered.
Similar to the experiments made in [3], the size of our band is set,
by default, to 10% of the query length |Q | and is further denoted
aswwarp .
Discovery Methods: Similarity search considers two discov-
ery methods. The first one is Best Match Discovery. This method
searches for the most similar sequence compared to the given
pattern, the so-called best match [20]. For monitoring tasks in
stream processing, Best Match Discovery is insufficient as once
a global minima is derived, all other sequences are pruned. The
second discovery method is Motif Discovery. Motif Discovery
is the mining of a repeated pattern in time series. According
to [6, 15, 18] searching for repetitions of patterns in time se-
ries streams is more meaningful than Best Match Discovery, as
streams are infinite and many similar patterns are expected to
occur. In contrast to Best Match Discovery, Motif Discovery does
not only deliver the best match, but also several similar sequences.
Thus, it gives a deeper inside of the data [12], meaning that the
stream is continuously searched and monitored.

Windows and Streams: When performing time series similar-
ity search on infinite streams, it is common to consider sliding
windows to analyze the data. Each window contains a sequence
of the data. By sliding over the series, overlaps of the data are
considered to prevent that a pattern is cut. Modern DSPS handle
streams in the exact same way. Thus, the parameters for parti-
tioning the data into sequences, can be related. First of all, from
similarity search we know, that the pattern and the sequences
should be of similar length. As DTW allows stretching and com-
pression of the sequence [2], a minimal (|Smin |) and maximal
sequence length (|Smax |) can be defined, considering that:

|Smin | ≤ |Q | ≤ |Smax |

Thus, in order to calculate the entire DTW distance matrix in
one window, the sliding window size should be equal to |Smax |.
In the window, we can create several subsequences (Si) which
fulfill the following equation:

|Smax − Si | ≥ |Smin |

Therefore, |Smin | is the perfect overlap size, which still ensures
an high accurate result. To slide over the time series, it needs to be
divided in consecutive sequences. DSPS allow the user to collect
data of the a certain time range in one window. Nevertheless, the
window content is not guarantied to be in order. Thus, in cases
where order is required, sorting by time needs to be applied to
ensure a meaningful comparison.

4 DISTRIBUTED DYNAMIC TIMEWARPING
Usually, pattern mining is a data discovery task, made at a stage,
where users have little knowledge about the data. Therefore, our
implementation allows the user to start the search without setting
DSPS or similarity search parameters. The initial pruning param-
eters are derived when the processing starts and are continuously
updated whenever a new sequence, more similar to the pattern,
is detected. If further knowledge about the data exist, parameters
can also be set to narrow the search space. One feature of DSPS
is keying, which automatically groups the data by assigned labels,
e.g. each monitored patient gets his own key. Another powerful
feature for similarity search is the global state, which can be ac-
cessed to get and update non-static parameters such as maximal
distance. Indeed, this global state allows faster pruning on all
workers by communicating the best-so-far distance result and
thus, avoiding unnecessary calculations of unpromising subse-
quences. A further advantage of this state is, that it is key-based
and thus able to develop different thresholds for multiple time
series [4], e.g. a specific threshold for each monitored patient.

4.1 Normalization
As mentioned before, patterns and sequences might appear in dif-
ferent scales (see Figure 1). Therefore, normalization is required.
In streaming we can apply normalization per sliding window.
The most accurate solution would be if the slide size is equal to
one and the window size equal to the pattern size. Such an accu-
rate normalization is optimized in single machines by leveraging
previous calculations. As workers in distributed systems do not
have easy access to previous results, our strategy is to extend the
window to Smax and trigger a new one after an optimal slide size.
This strategy reduces not only the number of windows but also
allows the implementation of several pruning techniques (see
Figure 3). Besides the overall computation reduction this might
affect accuracy. The reason for the accuracy loss is that, due to
the window extension, additional data points are considered. If

Figure 3: Overview of DTW Parameters

those data points are outliers, they influence the transformation
of all window observations.

4.2 Window Parameters
So far, we have derived a relationship between window and simi-
larity search parameters, the query length |Q | and the warping
band restrictionwwarp , but no optimal or recommended size for
Smax and Smin have been defined.

We extend the window size from |Q | to |Smax | to allow the
stretching of our sequence. Still, there are two main reason why
the window size should be kept small: Its negative impact on the
normalization accuracy (Section 4.1) and that in fact DTW is a
cumulative distance. This leads to the assumption, that too long
sequences can hardly give better results than shorter ones. DTW
is able to overcome large differences by leaving the diagonal
path by maximalwwarp cells. Still, longer sequences with lower
accumulated distanceswill not be a common case [16]. Restricting
|Smax | is a performance optimization as for each additional point
a further row is added to the DTW matrix. For all those reasons,
Smax is set by default to the following length and due to the
warping band relation we can define Smin in a similar way :

Smax = |Q | +wwarp and Smin = |Q | −wwarp

On the basis of |Q | andwwarp , all parameters of our implementa-
tion can be derived automatically for DTW and its processing in
a distributed system. They can also be set manually to adjust the
search according to special requirements. The derived window
parameters are in accordance with the suggestions made in [16]:

|Smax | ≤ 2 ∗ |Q | and Smin ≥
|Q |

2
One of the advantages of distributed systems is, that the sliding
windows can be distributed among several workers and therefore
takes advantage of parallelization. Once a worker has received its
window to be processed, we can apply traditional optimization
techniques as it is done in single machine processing.

4.3 Pruning
Fast pruning techniques forDTW have been considered to reduce
execution time. As no comparable distributed stream processing
implementation exists, we studied and modified single machine
techniques [18] for the usage in distributed systems. Not all
of them can be meaningfully applied to our implementation,
for example running sums or previous result heuristics with

dependencies between two consecutive subsequences [18] can
not be guaranteed in distributed systems. These techniques are
simply too expensive to be applied on independent subtasks and
workers with only few observations instead of the whole time
series. Since pruning often comes at the cost of accuracy, only
the following techniques, with good approximate results [6, 18]
and applicable to single sequences have been implemented:

(1) Warping band size and global maximal distance:
We use the Sakoe-Chiba Band [18] for reduction of the
DTW distance matrix search space and further prune all
paths as soon as their latest cell reaches the maximal dis-
tance. The entire distance matrix is pruned, whenever for
a certain qi , no sj can be found, which means for all pos-
sible paths d̂(qi , sj) is above the maximal distance. Due
to the usage of a global key-based state for the maximal
distance, each time series has its own distance threshold.

(2) Lower Bounds (LB): Early pruning of DTW matrix cal-
culations is possible with low cost calculations of LB.
LB_Kim, LB_KimFL and LB_Keogh variations [18], which
consider specific indexes and conditions for (qi , sj) combi-
nations, are implemented in our approach. Further, we can
prune an entire window using the triangle inequality of
DTW and Euclidean distance by calculating the Euclidean
distance for the first and the last subsequence of the win-
dow. If both are above the best-so-far Euclidean distance
(kept in our global state), the window is pruned. It is worth
to note, that this is not an exact search.

(3) Square root operations on distance calculations are omit-
ted as the extra computational effort makes no difference
to the distance ranking [18].

5 EXPERIMENTS
We have designed three experiments using the ECGoneday [17]
dataset and the query pattern (Q) of the experiments from Rak-
thanmanon et al. [18]. The first experiment is a baseline test
that allows us to compare our results against the ones reported
in [18]. In the second experiment we simulate a real-life scenario
e.g. a hospital where patients stay for a couple of days and their
ECG signals are continuously monitored. Finally, in the third
experiment the average response time is measured under various
loading conditions in order to determine how long it takes the
system to match the pattern in a continuous time series stream
in average.

5.1 Data and Processing Machines
The ECGoneday dataset contains 20.140.000 data points and rep-
resents one day, in particular 22 hours and 23 minutes, of ECG
data for a single patient. Thus, we receive 250 data points per
second. Using the default settings of our implementation and
the length of the given pattern, one Flink window contains 463
data points or 1.9 s of data. As sliding windows are used in our
application, another window is triggered by default every 336 ms.

In order to facilitate result comparisons and analyze the pro-
cessing overhead of parallelization in a distributed system we
run our experiments on the following machines:

• Laptop, an 8-core Intel with 2.90 Ghz, 31,1 GB RAM, run-
ning Ubuntu 18.04

• Another single machine, further called Server, with 48
CPUs, 2.90 Ghz, 126 GB of RAM, running Ubuntu 16.04

• Finally, we use a Cluster with 6 nodes, each with 48 CPUs,
2.90 Ghz and 48 GB of RAM, running Linux 4.18

Figure 4: Baseline Test: Accuracy Comparison

Table 1: Baseline Test: Execution Time Comparison for
various Machines with parallelization 8

Data Baseline [18] Laptop Server Cluster
1 patient, 1 day 35 s 37 s 145 s 118 s
Best Match Dis-
covery
1 patient, 10 days - 330 s 1.312 s 977 s
Best Match Dis-
covery
1 patient, 10 days - 967 s 4.066 s 2.176 s
Motif Discovery

In our implementation in Apache Flink (version 1.4.2), we han-
dle several patients’ data in parallel by utilizing multiple input
sources. Additionally, each operator in Flink, like our window
function, can split its operations into several subtasks, which can
be executed distributed and in parallel. The number of subtasks is
defined by the degree of parallelism. These subtasks are chained
together into so-called tasks. All operators working on the same
degree of parallelism can be chained to one task.

In order to execute our experiments we have to define another
important parameter on the machines: Taskslots. This parameter
defines the number of tasks a single worker can accept, which is
recommended to be set equal to the number of available CPUs
per machine [4]. Thus, Laptop is set to 8, while the other two
machines are set to 48. Important to notice is that the number of
Taskslots influences the parallelization degree. If more tasks than
available task slots are created, these tasks need to wait, which
cause delays or timeout errors. For all tests, five repetitions of
each experiment are performed and the average processing times
are reported.

5.2 Baseline Test
Our initial test is a comparison between the implementation
of Rakthanmanon et al. [18] and ours. Thus, we run our applica-
tion on the three machines for the ECGoneday dataset. For this
test, the search mode of our application was set to Best Match Dis-
covery, which is also used in the experiments of Rakthanmanon
et al. We expected a computational overhead for all machines

Figure 5: Stream Simulation Test: Total Execution Time
for ten Days, several Patients (Sources) and various levels
of parallelism executed on Laptop, Server and the Cluster

due to the usage of Apache Flink. Both, Cluster and Server need
to deal with CPU distribution and the Cluster further with data
shuffles and communication effort to overcome the shared mem-
ory disadvantage. These costs only become negligible in case of
large data sets or streams, which in fact ECGoneday is not.

We set all machines to a maximal parallelization degree of
8 for a better comparison with the Laptop achievements. The
results presented in Table 1 prove that our implementation is very
close to Rakthanmanon et al. [18] achievements, with only 2 s
difference on Laptop. Here, the application profits from caching
due to shared memory and little monitoring costs of the cores.

On the other hand, shared memory and/or monitoring tasks
cause a massive overhead in both, the Cluster and the Server,
as the processing time for these machines are much higher. As
mentioned before, these results are not surprising as stream pro-
cessing as well as distributed systems are intended to process
large amounts of data. Thus, we re-run this experiment with
an increased number of days to 10. Laptop still can handle this
amount of data and beats the other two machines in both modes,
Best Match and Motif Discovery. Here, we can already notice that
the difference between both modes is an execution time increase
of up to three times in all machines.

This experiment was also used to double check accuracy, in the
sense of verifying whether we obtain the same best match results
as Rakthanmanon et al. [18]. In our implementation, due to the
distributed normalization used, we obtained two best matches,
one of them corresponding to the one found by Rakthanmanon
et al. We show the best matches obtained with our distributed
DTW in comparison to the one of DTW [18] in Figure 4.

5.3 Stream Simulation Test
In this experiment we stress the processing machines even more
by not only adding more days of data but increasing the number
of patients up to 64. The data is processed in parallel and the
search mode is set to Motif Discovery, which is a more realistic
scenario than Best Match Discovery. This search mode has much
higher computational demand, as seen in the first experiment,
since more calculations need to be executed and the output rate
increases due to a positive tolerance interval of the maximal
distance bound. Stream processing is intended to run over a
long period of time, thus we fix the number of days to 10 per
patient, based on the idea of simulating a real-life scenario e.g. of
a hospital, where patients stay for a couple of days. We run this
test with an increasing number of patients (sources in the Flink
environment) starting with 8 and up to 64 patients. Also, several

parallelization levels, from 8 to 84 are applied. The execution
time comparison of various settings is visualized in Figure 5.

A first observation in Figure 5 is that the Laptop can only
handle parallelization 8 and although, it is faster with 8 sources
as soon as we increase the parallelization level, Laptop is not
even able to start the process. Remember that every machine has
a limitation on the number of Taskslots, for Laptop it is 8.

We can also observe that the best results are obtained with the
Cluster for parallelization 8, irrespective of the number of sources.
This result can be explained again by the available number of
task slots in the Cluster. Moreover, the first experiment with 8
sources on parallelism 8 creates only 64 subtasks excluding the 8
source tasks in the beginning. The Cluster can execute all of them
in parallel due to its workers capacity (48 Taskslots ∗ 6 nodes),
while Server as well as Laptop need to queue tasks, what increases
their response time.

But, how far can we increase the parallelism on the Cluster?
We observed, that whenever the following inequality is true, we
do not profit any more from the distributed environment.

Sources ∗ Degree of Parallelism ≥ 2 ∗ Available task slots

5.4 Average Response Time Test
The final experiment has been conducted to examine, how long
the system takes to decide, if a window is similar to the given
pattern, or not. For real-life applications the response time is a
critical issue, since the faster the matching is done the faster a
human can react, e.g. attend a patient in a hospital. In a real-time
scenario a worker processing a window needs to wait until its
end time is reached, before it is triggered. In other words, as
long as it has not seen all the required data, no decision can be
made. Thus, this time is not considered as technical caused delay.
Inspired by the benchmark experiments performed in [9], we
define the average response time by calculating the difference of
the system time between the arrival of the final data point of the
window and the output of the window result. Figure 6(a) presents
the results of our application, aggregated over 10.000 consecutive
windows for 10 days data of a single patient. The plot shows, that
initializing the application is an expensive process. Here, several
pruning parameters are established and permanently updated
with improved threshold values between the workers. After the
first 10.000 windows, the average response time drops from up
to 0,34 ms to less than 0,05 ms in average per window as the
application is now able to quickly prune unpromising sequences.

This response time is stable for the next 100.000 windows,
which corresponds in real-time to the first 16 hours of the first day.
Afterwards, it drops again to responses truly close to 0 and thus
to real-time response. Further, we can observe some non-regular
peaks in Figure 6(a). They indicate delays, which are caused by
the network, e.g. due to the data throughput, communication,
result writing, etc. Still, the time variants of the peaks are tiny
and appear rarely, thus, they can be ignored for the overall result.

The average response time increases if multi-sources are pro-
cessed. Figure 6(b) is the resulting plot of the average response
time test runs with 8 patients and 10 days of data on Server and
Cluster. In the first 100.000 windows the response time is up to
120 ms with an average of 65 ms for the Server and up to 70 ms
for the Cluster with an average of 36 ms. Only after learning
the pruning parameters both machines prove fast responses of
0,022 ms for the Cluster and 0,039 ms for the Server.

(a) Average Response Time for a single source (b) Average Response Time, 8 sources, after first 100.000 windows

Figure 6: Average Response Time for DTW on Cluster: Aggregated results over 10.000 processed windows for 10 days

6 CONCLUSIONS
In this paper we present time series similarity search with DTW ,
which has been reported as computational expensive and difficult
to implement for real-time processing. We benefit from Apache
Flink features such as smart partitioning and keying and are thus
able to process several sources and sliding windows in parallel
for independent distance computation. The overall result of this
paper is, that efficient similarity search by the usage of modern
DSPS is feasible and gives sufficiently fast response for imme-
diate reactions on matching sequences. Besides, and to the best
of our knowledge, none of the reviewed literature can handle
several maximal distance thresholds for searching patterns in
multiple time series in parallel. Future work is required though,
especially, to extend the efficiency and generality of the applica-
tion. Possible future work areas are: handle multiple patterns at
the same time, allow processing of multi-dimensional time series
and the maintenance of patterns over time, for example by using
a ValueState to allow on-line learning. For DTW , the usage of
a tree structure to maintain the pattern would be necessary to
react on matches with different length.

ACKNOWLEDGMENTS
This work was partly supported by the German Federal Min-
istry of Transport and Digital Infrastructure (BMVI) through
the Daystream project (grant no. 19F2031A), the German Min-
istry for Education and Research (BMBF) as BBDC (grant no.
01IS14013A) and the EU H2020-ICT-2017-2018 program through
the BigMedilytics project (grant no. 780495).

REFERENCES
[1] Alice Berard and Georges Hebrail. 2013. Searching Time Series with Hadoop in

an Electric Power Company. In Proceedings of the 2Nd International Workshop
on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems,
Programming Models and Applications (BigMine ’13). ACM, New York, NY,
USA, 15–22. https://doi.org/10.1145/2501221.2501224

[2] Donald J Berndt and James Clifford. 1994. Using dynamic time warping to
find patterns in time series.. In KDD workshop, Vol. 10. Seattle, WA, 359–370.

[3] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn
Keogh. 2008. Querying and mining of time series data: experimental com-
parison of representations and distance measures. Proceedings of the VLDB
Endowment 1, 2 (2008), 1542–1552.

[4] Apache Flink. 2018. Apache Flink: Fast and reliable large-scale data processing
engine. http://flink.apache.org

[5] Apache Foundation. 2018. Apache Storm. http://storm.apache.org/
[6] Alborz Geramifard, Finale Doshi, Joshua Redding, Nicholas Roy, and Jonathan

How. 2011. Online discovery of feature dependencies. In Proceedings of the
28th International Conference on Machine Learning (ICML-11). 881–888.

[7] Tian Guo, Saket Sathe, and Karl Aberer. 2015. Fast distributed correlation
discovery over streaming time-series data. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management. ACM,
1161–1170.

[8] Mirko Kämpf and Jan W. Kantelhardt. 2013. Hadoop.TS: Large-Scale Time-
Series Processing. International Journal of Computer Applications 74, 17 (July
2013), 1–8. https://doi.org/10.5120/12974-0233

[9] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri
Heiskanen, and Volker Markl. 2018. Benchmarking Distributed Stream Pro-
cessing Engines. arXiv preprint arXiv:1802.08496 (2018).

[10] Maria Kontaki, Apostolos N Papadopoulos, and Yannis Manolopoulos. 2007.
Adaptive similarity search in streaming time series with sliding windows.
Data & Knowledge Engineering 63, 2 (2007), 478–502.

[11] Xiang Lian, Lei Chen, Jeffrey Xu Yu, GuorenWang, and Ge Yu. 2007. Similarity
match over high speed time-series streams. In Data Engineering, 2007. ICDE
2007. IEEE 23rd International Conference on. IEEE, 1086–1095.

[12] Bo Liu, Jianqiang Li, Cheng Chen, Wei Tan, Qiang Chen, and MengChu Zhou.
2015. Efficient motif discovery for large-scale time series in healthcare. IEEE
Transactions on Industrial Informatics 11, 3 (2015), 583–590.

[13] Alice Marascu, Suleiman A Khan, and Themis Palpanas. 2012. Scalable similar-
ity matching in streaming time series. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Springer, 218–230.

[14] AbdullahMueen and EamonnKeogh. 2010. Online Discovery andMaintenance
of Time Series Motifs. In Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’10). ACM, New
York, NY, USA, 1089–1098. https://doi.org/10.1145/1835804.1835941

[15] Rodica Neamtu, Ramoza Ahsan, Elke Rundensteiner, and Gabor Sarkozy. 2016.
Interactive Time Series Exploration Powered by the Marriage of Similarity
Distances. Proc. VLDB Endow. 10, 3 (Nov. 2016), 169–180. https://doi.org/10.
14778/3021924.3021933

[16] Panagiotis Papapetrou, Vassilis Athitsos, Michalis Potamias, George Kollios,
and Dimitrios Gunopulos. 2011. Embedding-based subsequence matching in
time-series databases. ACM Transactions on Database Systems (TODS) 36, 3
(2011), 17.

[17] Mueen Rakthanmanon, Campana and Batista. 2012. The UCR Suite: Funded
by NSF IIS - 1161997 II. http://www.cs.ucr.edu/~eamonn/UCRsuite.html

[18] Thanawin Rakthanmanon, Bilson Campana, AbdullahMueen, Gustavo Batista,
Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. 2013. Ad-
dressing Big Data Time Series: Mining Trillions of Time Series Subsequences
Under Dynamic Time Warping. ACM Trans. Knowl. Discov. Data 7, 3 (Sept.
2013), 10:1–10:31. https://doi.org/10.1145/2500489

[19] Norihiro Takahashi, Tomoki Yoshihisa, Yasushi Sakurai, and Masanori
Kanazawa. 2009. A parallelized data stream processing system using dy-
namic time warping distance. In Complex, Intelligent and Software Intensive
Systems, 2009. CISIS’09. International Conference on. IEEE, 1100–1105.

[20] Limin Xiao, Yao Zheng, Wenqi Tang, Guangchao Yao, and Li Ruan. 2013.
Parallelizing dynamic time warping algorithm using prefix computations
on GPU. In High Performance Computing and Communications & 2013 IEEE
International Conference on Embedded and Ubiquitous Computing (HPCC_EUC),
2013 IEEE 10th International Conference on. IEEE, 294–299.

