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A Comparison of Distributed Stream Processing Systems for
Time Series Analysis
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Abstract:

Given the vast number of data processing systems available today, in this paper, we aim to identify,
select, and evaluate systems to determine the one that is better suited to use in conducting time series
analysis. Published studies of performance are used to compare several open-source systems, and two
systems are further selected for qualitative comparison and evaluation regarding the development
of a time series analytics task. The main interest of this work lies in the investigation of the Ease of
development. As a test scenario, a discrete Kalman filter is implemented to predict the closing price of
stock market data in real-time. Basic functionality coverage is considered, and advanced functionality
is evaluated using several qualitative comparison criteria.
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1 Introduction

Today’s batch and stream processing systems possess vastly different characteristics and
are designed to tackle diverse classes of problems. Batch processing systems (BPS), such
as MapReduce-based systems, are well-suited for querying stored historical data (a.k.a.
data-at-rest). In BPS, data processing is efficient, and administration overhead is minimal
(relative to real-time processing systems [SG17]), but they cannot face the constraint of
real-time. In contrast, stream processing systems (SPS) are able to process data in real-time
(a.k.a. data-in-motion), which is necessary since streaming data is unbounded. Stream
processing is performed at the event, window, or micro-batch level [SG17].

Time series data (TSD) are comprised of a series of measurements (e.g., stock market
data, medical data, meteorological data [BKF17]), that are taken at a given time-scale (e.g.,
second, minute). Traditionally, time series management systems (TSMS) and time series
data bases (TSDB) have been used to process and store TSD, as discussed in recent surveys
(e.g., TSMS [JPT17], TSDB [BKF17]). The frameworks/systems analyzed in these surveys
offer querying and data storage capabilities and additionally support some data analytics
1 Technische Universität Berlin, FG DIMA / Fakultät IV, m.gehring@campus.tu-berlin.de
2 DFKI / Technische Universität Berlin, marcela.charfuelan@dfki.de
3 Technische Universität Berlin / DFKI, volker.markl@tu-berlin.de

cba doi:10.18420/btw2019-ws-21

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 205



12 Melissa Gehring, Marcela Charfuelan, Volker Markl

and may include stream processing capabilities. However, in general, stream processing
is not a requirement for TSMS and TSDB. Instead, these systems are designed to handle
historical TSD and are ill-suited for real-time processing. Additionally, the majority of these
systems are unable to perform advanced analytic tasks, such as prediction, forecasting and
similarity search. Recently, real-time SPS, capable of performing stream and batch analytics,
have emerged. Thus, we seek to conduct a practical evaluation of these state-of-the-art
systems for time series analysis. For our experiments, we implemented a discrete Kalman
filter to predict the closing stock market prices in real-time. In this paper, the focus is on the
examination of the Ease of development of the various implementation steps. Qualitative
criteria are defined in order to compare the implementation steps of the predictive task in a
streaming test scenario.

The paper is organized as follows. In Section 2 we discuss the selection and evaluation of
two open-source SPS for time series analysis using published studies of performance. The
qualitative comparison criteria are also defined within this Section. In Section 3 we describe
the test scenario and summarize the qualitative assessment that we underwent. In Section 4
we present our conclusions.

2 Comparison Methodology

2.1 Stream Processing Systems

Several criteria are available to characterize SPS. An active field of research is the
performance analysis, applied to different systems using quantitative measurements, such as
latency and throughput. In this paper, the latest versions of the one-at-a-time based SPS
Apache Storm4, Apache Flink5, Apache Samza6 and the microbatch based systems Storm
Trident7 and Spark Streaming of Apache Spark8, are compared utilizing several published
studies of performance [Wi16, KKR15, Ch16, Ka18]. In Table 1 the characteristics of
the previously-mentioned systems are summarized. According to the Yahoo Streaming
Benchmark [Ch16], Flink and Storm offer lower latencies, whereas Spark is able to handle
higher throughputs, while having somewhat higher latencies. This finding confirms the
common statement that there is a difference between micro-batch and one-at-a-time based
SPS. According to the Karimov et al. Benchmark [Ka18], (1) Spark is better suited to
overcome streams containing skewed data, (2) Flink and Spark are very robust to fluctuations
in the data arrival rate in aggregation workloads, (3) Flink is best at handling fluctuations
in the data arrival rate on join queries, (4) Flink provides the lowest average latency, (5)
Spark (with higher average latency) manages to bound latency best, and (6) Flink has higher
throughput with a low latency, in use-cases containing large windows.

4 http://storm.com
5 http://flink.com
6 http://samza.com
7 http://storm.com/trident
8 http://spark.com
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Storm Storm
Trident

Spark
Streaming

Flink Samza

Processing
model

one-at-a-time micro-batch micro-batch one-at-a-time one-at-a-time

Delivery
guarantee

at-least-once exactly-once exactly-once exactly-once at-least-once

Backpressure
mechanism

yes yes yes yes buffering
mechanism

Ordering
guarantees

no between
batches

between
batches

no within stream
partitions

Tab. 1: Comparison of stream processing systems adapted from [Wi16]

Choosing a processing model always means trading off between latency and throughput.
Latency must also be traded against other desirable properties, such as message delivery
guarantees and ease of development, as they increase the per data-item overhead (messaging
and state replication). Rich processing guarantees at the same time make a system more
reliable. Thus, a variety of characteristics can influence the selection of a suitable framework.
Although it is still challenging to select an appropriate stream processing system considering
performance issues and reliability, two frameworks provide great support. Apache Spark
and Apache Flink stand out to bring better performance, unified with the most advanced
features in comparison to Storm, Storm Trident and Samza.

Support for Storm Storm
Trident

Spark
Streaming

Flink Samza

Languages J, P, L, R J, S, C J, S, P J, S J
Event-time no no yes yes no
Watermark, allowed lateness, trigger no no partly yes no
Windows, joins, filter, aggregations, etc. no yes yes yes yes
Stream SQL no yes yes yes no

Tab. 2: Functionality across stream processing systems (J: Java, S: Scala, P: Python, L: Perl, R: Ruby,
C: Clojure)

Unfortunately, the evaluation criteria did not further analyze the Ease of development,
which for a beginner in working with SPS is an important property. The usability of
SPS can be increased, for example, by offering richer language support as well as the
availability of higher-level APIs with support for common functions, like windowing,
joins, filtering, aggregations, or stream SQL support. Furthermore, usability is enhanced if
advanced features, like event-time processing, watermarking, and triggers are offered. Table
2 summarizes key features commonly associated with the different SPS. Storm supports a
wide range of languages but does not provide a high level-API. Samza and Storm Trident
offer some advanced features like support for windowing, filtering, etc. but lack of event-time
support. Flink and Spark support these advanced features and also provide an API to use
SQL within streams. Storm Trident does as well, but a lack of event-time support and
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active support by the community [Ka18] exist. Spark took a big step forward by integrating
event-time support with Spark Structured Streaming Version 2.1.

Both Apache Spark and Apache Flink stand out, achieving higher performance and offering
the most advanced features. Thus, these two systems are selected for qualitative comparison.

2.2 Qualitative Criteria

Our selection of criteria is inspired by the work of Armstrong [Ar01], where various
quantitative and qualitative criteria are considered when selecting among various time
series forecasting methods. i) Ease in using available data, ii) Ease of use, iii) Ease of
implementation and iv) Flexibility are among the top ten criteria. These qualitative aspects
are affected by the selection of implementation framework. Therefore, in our test scenario,
we conduct our qualitative analysis on the basis of these criteria. The following measures
are defined for rating the first three criteria: Extent, Simplicity and Documentation. The
fourth criterion, Flexibility, is considered to evaluate the implementation of more advanced
functions in the prediction task. Yet, another measure, the Adaptability, is defined to rate
the systems regarding the criterion of Flexibility. Table 3 shows the various rating levels
defined for the measurements and their corresponding meaning.

Basic functions Advanced functions
Rat. Extent Simplicity Documentation Adaptability
++ Additional

features
available

Simple and under-
standable concept. Au-
tomated functionality.

Good access
and high
quality.

Adaptation integrable with
low user side implementa-
tion overhead

+ Function
and essen-
tial features
available

Clear concept. Rea-
sonable user side
implementation over-
head.

Access insuffi-
cient.

Adaptation integrable with
reasonable user side imple-
mentation overhead.

0 Function
available.

Concept is not clear or
disproportionate user
side implementation
overhead.

Mentioned in
documentation

Adaptation theoretically pos-
sible but disproportionate
implementation overhead.

- Function
not avail-
able

Function not available Documentation
not available

Adaptation not possible/ in-
tegrable.

Tab. 3: Criteria and Rating for qualitative comparison of Ease of Development in Spark and Flink

3 Test Scenario and Qualitative Comparison

Test Scenario Pipeline. In SPS, sources and sinks are typically employed. Data is consumed
from a source, then processed within the system before being sent to a sink. The pipeline
shown in Figure 1 is employed in the test scenario. Flink and Spark consume their data
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from Apache Kafka 9, which is a distributed streaming platform serving as a message
broker. A Kafka topic is created, and data is then sent to this topic, where it is persistently
stored. The SPS can subscribe to the topic and will then always directly get the newest
data published by Kafka in the particular topic. The prediction task in the test scenario
requires the implementation of various tasks or functions in several steps. Table 4 shows the
main steps organized in two groups (basic and advanced), the corresponding comparison
features and the qualitative measurements and ranking for each step. For visualization and
verification purposes, the pipeline will be extended by a persisting instance, i.e., the special
TSDB InfluxDB 10. InfluxDB can be used as source for Grafana 11, a modern time series
visualization tool.

Fig. 1: Stack for test scenario implementation and example of stock data visualization

Test Data. Stock market data time series will be used for the prediction task. The used
data set available at Kaggle12, contains data from the S&P 500 (i.e., Standard & Poor’s
500) index. The dataset contains historical data over a five-year period (2012-08-13 through
2017-08-11) across all current 500 companies listed on the S&P 500 index.

3.1 Qualitative Comparison

Step 1 - Setup. Setting up the pipeline is not challenging for either system. Although both
systems support several APIs for various kinds of data processing, batch and streaming,
Flink is more focused on streaming, which is also reflected in the documentation. In Spark
the user needs to take a deeper look to find the right documentation and information for
setting up the streaming environment.

9 http://kafka.com
10 http://influxdb.com
11 http://grafana.com
12 https://www.kaggle.com/
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Simplicity Documentation
Flink + Different libraries need to be in-

cluded either working in Java or Scala
++ Short and clear documentation. Easy to find
as directly provided in Download area.

Spark + Different libraries need to be in-
cluded, as wide range of libraries exist,
all offering interesting functions; there
is no centralized library.

+ Short and clear documentation. Harder ac-
cess due to spread of dependencies, they are
located in the documentation areas of different
APIs.

Step 2 - Time handling. Handling time is a very important aspect to consider in developing
streaming applications. Very often it is desired to process data using the event-time, the
time when the event occurred, instead of the processing-time, the time of the machine when
the data is processed. Although not all SPS provide support for this type of time processing,
both Flink and Spark do. Flink’s event-time support has been available for quite some time.
It is mature and further offers a wide range of additional features. Event-time support in
Spark is a drawback, since it is still a new feature. The integration of event-time support is
not in the Spark Streaming library, but rather is in the Spark Structured Streaming library.

Extent Simplicity Documentation
Flink ++ Wide range

of features avail-
able (watermark,
allowed lateness,
triggers)

+ Complex concept for event-
time support. The user needs
to define parts of the concept
(TimeStampExtractor) him-
self or can use predefined ones
(not automated).

++ Very clear and helpful doc-
umentation with examples and
detailed description and easy
to find.

Spark + Basic event-
time support
available and
watermark config-
urable.

+ Easy and understandable
concept, the user can easily
group by window due to sav-
ing event-time within columns,
but the system breaks (trans-
formation to other data format
is necessary)

0 Hard access due to lack of
remark about event-time sup-
port within Spark Streaming
documentation, just in Spark’s
Structured Streaming docu-
mentation (other library). Doc-
umented functions are then not
directly applicable since other
data structure has to be used.

Step 3 - Stream Source Connector. As Kafka is a widely adopted source for SPS it is used
to provide access to event streams. The integration is easy to realize within both systems.

Extent Simplicity Documentation
Flink ++ Wide range of

features available
(deserializer, off-
set control, etc.)

++ Easy and clear concept for
Kafka integration, especially
the stream creation (2 actions
for configuration, 1 for stream
creation as a DataStream).

++ Very clear and helpful doc-
umentation with examples and
detailed description and easy
to find.

Spark ++ Wide range of
features available
(deserializer, off-
set, etc.)

++ Easy and clear concept for
Kafka integration, especially
the configuration (1 action for
configuration, 1 complex ac-
tion for stream creation as a
DStream)

+ Clear and helpful documen-
tation but missing examples
and description for advanced
features. Confusing location of
documentation part.
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Step 4 - Preprocessing. The functions necessary to apply preprocessing are very basic ones
within a stream processing system, as the preprocessing is a step that always needs to be
applied. There is almost no difference between Flink and Spark in this step. The functions
make it possible to implement user-defined functions that can process custom data items.

Extent Simplicity Documentation
Flink ++ Very flexible. Ex-

pression and self de-
fined functions can be
used within transfor-
mation functions.

++ Easy concept, easy to use,
understandable application.
Just 1 action necessary for
integration of self defined
functions.

++ Good access. Detailed
documentation of concepts
with understandable exam-
ples and explanations.

Spark ++ Very flexible. Ex-
pression and functions
can be used within
transformation func-
tions.

++ Easy concept, easy to use,
understandable application.
Just 1 action necessary for
integration of self defined
functions.

+ Good access. Detailed
documentation of concepts
and understandable exam-
ples available, but missing
explanations of the exam-
ples.

Step 5 - Stream Processing. Stream processing operations are typically applied using
event-time. A basic operation is the implementation of sliding windows and transformations
afterwards. Within this step, the implementation of a moving window average is compared.
As the window is applied using event-time, Spark’s new Structured Streaming API needs
to be used, which makes operations on multidimensional data possible. Stream functions
are easy to implement, as SQL-based operations on streams are available. In Flink the
concept is clear, but implementations need to be done manually due to missing support of
multidimensional aggregations in predefined functions.

Extent Simplicity Documentation
Flink + No predefined function avail-

able for advanced features, in
form of multidimensional ag-
gregation on windows, but re-
alizable through UDFs. Sliding
window and event-time support
available.

+ High complexity of the
concept to implement UDFs.
2 actions necessary (1 im-
plementation of user defined
function and 1 for applica-
tion of user defined func-
tion).

++ Good access.
Detailed documen-
tation of concepts
with understandable
examples and expla-
nations.

Spark ++ Advanced features avail-
able. Aggregation of multidi-
mensional points on windows
realizable through SQL based ag-
gregations. Sliding window and
event-time support available.

++ Very easy and under-
standable concept due to
SQL based operations. 1
user action necessary for op-
eration.

++ Good access.
Detailed documen-
tation of concepts
with understandable
examples and expla-
nations.

Step 6 - Time Series Analysis. In a first step of the TSD analysis, a version of the discrete
Kalman filter is implemented in both systems. For simplicity, assumptions made by Welch
et al. [WB01] were used. The code is adapted to fit the use case in the form of processing
stock data in streaming fashion. In the second step of the TSD analysis, an online evaluation
is implemented. To do so, an error calculation has to be integrated in the Kalman filter
algorithm that compares the previous predicted value with the current actual value.
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Adapting to stock market use case Integrating error cal-
culation

Flink ++ Due to easy implementation as a function applicable as a
flatmap transformation on stream the adaptation to the use
case was easily realizable, just the input and output had to
be customized as well as the calculation to be using closing
price.

++ Integration without
any issues due to easy
implementation of the
algorithm as a flatmap
function.

Spark + The implementation of the Kalman Filter is using a more
complex concept. The data source needed to be adjusted
so that a DStream could be processed. Due to the stream
coming in as batches that adaptation resulted challenging.
Furthermore processing of stock data items had to be enabled,
as well as outputting predicted items. Calculation had to be
adjusted to work on closing price. These adaptations were
possible to realize without problem.

++ Easy integration of
error calculation into re-
turned object.

Step 7 - Evaluation. Two means of evaluation are considered, i.e., an online evaluation
during stream processing and another, conducted after collecting and extracting processed
streaming results. Both Flink and Spark, provide different possibilities to analyze data
resulting from the application. Both provide the functionality of applying SQL to the data
after transforming it to a new data format. The results of the queries were not possible to
extract, so further analysis was not possible. Another option tested was to apply aggregation
functions on the streams directly in Flink and on the RDDs in Spark. In Flink, the results
were calculated continuously on the entire stream; in Spark the calculation only considered
items within the RDD. Due to these problems, sinking the results to a .csv file was preferred.
This is possible in Flink, but not in Spark due to the partitions made for each RDD.

Perform evaluation
Flink + Wide range of possibilities to perform evaluation available: great support for evaluation

directly on stream of errors and export to csv easily possible. Challenging when
converting stream to a data set and trying to export the results achieved applying SQL.

Spark 0 Wide range of possibilities to perform evaluation available, but none of them could
be applied correctly due to problems handling the RDDs.

Step 8 - Visualization. To integrate the visualization using InfluxDB and Grafana a
connector is necessary. InfluxDB connectors exist for both Flink and Spark. The integration
of the connectors was analyzed according to their Adaptability, considering the integration
in general, the customization necessary to write stock data into the data base and the
possibility of adding other sinks to other streams (at various stages of TSD processing).
The connector available for Flink achieved very good results for all these criteria, Figure 1
shows a screenshot of this visualization. Unfortunately, the connector available for Spark
could not be integrated due to missing information and documentation.

Integration of visualization connector
Flink ++ Available connector provides high flexibility, easy adaptation to the use case, so that

custom data formats are accepted. Very easy handling and integration to the use case
(Just adding customized sink to DataStream).

Spark - No easy-to-integrate connector available.
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4 Conclusion

Table 4 summarizes the results of Section 3. Generally, both Flink and Spark, provide
qualitatively high basic functionality, necessary for the development of basic streaming
applications. When developing advanced applications for TSD, Flink appears to be better
suited than Spark, since the programming abstraction complexity is lower in Flink. Fur-
thermore, Spark requires the use of a wide range of frameworks to incorporate diverse
functionality and requires transformations across several APIs.

The DataStream API provided by Flink is straightforward and thin. Flink’s programming
abstractions for streaming are simple and ease the development within advanced tasks.
Spark’s Streaming API cannot directly be compared to Flink’s DataStream API, as the
essential event-time support is not integrated in the Spark Streaming API. A fair comparison
would be using Spark’s Structured Streaming API. Due to the relatively new API, many
advanced algorithms and implementations are not yet available for Spark Structured
Streaming from contributors. This was also an issue during the implementation of the test
scenario. Implementations of the Kalman filter were only available for Spark Streaming.

Step Criteria Flink Spark
1 - Setup Simplicity + +

Documentation ++ +
2 - Time Handling Extent ++ +

Simplicity + +
Documentation ++ 0

3 - Stream Source Connector Extent ++ ++
Simplicity ++ ++
Documentation ++ +

4 - Preprocessing Extent ++ ++
Simplicity ++ ++
Documentation ++ +

5 - Stream Processing Extent + ++
Simplicity + ++
Documentation ++ ++

Basic functions: 24 20
6a - Time Series Analysis - Adaptation to stock
market use case

Adaptability ++ +

6b - Time Series Analysis - Integrating error
calculation

Adaptability ++ ++

7 - Evaluation Adaptability + 0
8 - Visualization Adaptability ++ -
Advanced functions: 7 2∑

Total 31 22

Tab. 4: A qualitative comparison of a predictive analytics task between Flink and Spark.
Regarding the evaluation step, the functionality offered by Spark is less straightforward than
the functionality offered by Flink. Visualization using the widely adopted tool, Grafana, can
be easily integrated using Flink. Based on our analysis, it appears that integrating Flink with
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Grafana for time series analysis is the preferred option for stream processing, monitoring,
and the visualization of data streams. In Spark, there is no easy connector yet available for
Grafana, despite the broad range of adopted tools. The focus of Spark does not lie on its
streaming functionality, but more on batch. Flink’s focus on streaming is remarkable in the
majority of the tasks tested within this work and therewith brings qualitative higher Ease of
development.
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