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Abstract 

Increasing demand for customized products in the wake of the 4th Industrial Revolution is placing ever increasing demands on 

the flexibility of manufacturing systems. Furthermore, the increasing usage of automated guided vehicles (AGV) adds another 

layer of flexibility and also complexity to the overall production system. The resulting Flexible Job Shop Scheduling Problem 

(FJSSP), including the coordination of the AGVs, is NP-hard and therefore hard to optimize. To address this problem, a 

Reinforcement Learning Multi Agent (MARL) system is proposed, in which job scheduling and vehicle planning is done 

cooperatively. This concept is described and prototypically implemented. 
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1. Introduction  

The continuing trend toward customized products described 

by Industry 4.0 confronts manufacturing companies with major 

challenges. To be able to meet customer demand, the principle 

of flexible production systems is becoming increasingly 

popular. These flexible production systems enable the 

production of a greater number of variants, without 

necessitating an increase in the number of available machines. 

This is particularly evident with the introduction of matrix 

production systems. Here, a great deal of emphasis is placed on 

coordinating the transportation system between manufacturing 

cells.  

The planning of such complex production systems, as well 

as the increasingly important planning of autonomous transport 

systems, is a time-consuming and cost-intensive process. 

Usually these planning problems are NP-hard, i.e. they cannot 

be planned optimally in practice. To cope with this, heuristics 

and metaheuristics are often used, which forgo an exact solution 

of the planning problem in favor of faster computation times.  

However, even heuristic and metaheuristic methods often 

pose problems in practice. For example, the planning problem, 

as well as the relationships of the elements within the planning 

problem, must be well known. Alternatively, these are 

simplified approximately. In addition,  production scheduling 

and transportation planning are usually performed sequentially. 

Inclusion of the location of the transportation means is mostly  

omitted in planning and is a new trend in production planning 

research [6]. 

To address this problems, a Multiagent Reinforcement 

Learning (MARL) based method is created and prototypically 

implemented in a Unity3D environment in this contribution. In 

this method, machines with their (production) capacities, as 

well as transport units, are modeled as independent agents that 

communicate with each other. This implementation solves a 
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series of planning instances, which are compared to common 

heuristics used in production. 

2. State of the art and related work 

In Deep Reinforcement Learning research, many 

breakthroughs have been achieved in recent years. Arguably, 

Deep-Q Learning has received the most attention due to the 

work of Deep Mind in the game Go [8]. Further developments 

in Deep Reinforcement Learning include the Trust Region 

Policy Optimization (TRPO) algorithm presented in [9]. This 

algorithm updates policies by taking the largest step possible to 

improve performance, while satisfying a special constraint on 

how close the new and old policies are allowed to be based on 

the KL-divergence. OpenAI introduced the Proximal Policy 

Optimization (PPO) algorithm in [2]. This algorithm introduces 

an adaptive KL-penalty and is especially characterized by its 

robustness to hyperparameters and to actions in the continuous 

domain. Also adapted to action spaces in the continuous 

domain is the Deep Deterministic Policy Gradient (DDPG) 

presented in [10]. This represents an actor-critic, model-free 

algorithm with a deterministic policy gradient.   

Other well-known algorithms that are widely used in Deep 

Reinforcement learning and were considered in this research 

are the Soft Actor-Critic (SAC) [11], the Twin Delayed DDPG 

(TD3) [12] and Advantage Actor-Critic (A2C) [13].  

The use of Deep Reinforcement Learning in multiagent 

systems is also an active field of research. For example, in [14], 

a mixed competitive and cooperative physics-based 

environment was presented in which agents compete in a 

simple game of hide-and-seek. Particularly noteworthy is the 

emergent behavior of the agents, which use the environment 

itself to their advantage.  

The distributed solving of JSSP by the means of 

reinforcement learning has been shown in [15]. Here, the 

combination of shallow neural networks with a multiagent 

architecture – called neurodynamic programming – has been 

used to solve a generic JSSP. The authors highlight the ability 

of this approach to achieve a good solution far faster than 

algorithms such as branch and bound, which asymptotically 

needs more time when the problem grows. 

MARL systems with Deep Reinforcement Learning have 

also been used in the area of production planning. [4] 

formulates a MARL approach for online reactive scheduling of 

flexible job shops. Here, unpredictable events, such as machine 

breakdowns and reconfigurations, are included. In this 

approach, one or multiple jobs are assigned to an agent, which 

directs them through the process flow. This point distinguishes 

this approach from many others in which agents are assigned 

to machines.   

Such an approach was explored in [5], which also considers 

FJSP. The problems studied consist of jobs in different batch 

sizes and producing units, where each unit consists of a 

collection of identical machines.  Moreover, to account for 

setup times, the machines within a production unit have 

different settings that can be changed with time. For scheduling 

of randomized lot sizes of a range of diverse jobs, [5] was able 

to train a MARL such that the results do not outperform 

heuristic methods, but correspond to expert knowledge.  

In another publication, see [3], a MARL architecture is 

proposed to solve classical JSP. In this approach, agents decide 

which jobs to process next on their assigned machines based on 

the local state. Local sensing of the state, on the one hand, 

increases the difficulty of solving the problem optimally, and 

on the other hand leads to decentralized control. This is an 

approach that, based on the results, is also pursued in the 

methodology proposed in this research work.  

[3] was able to show that this approach achieves reactive 

scheduling, where the agents adjust their behavior to a global 

goal. After the agents generalized their strategies, results were 

obtained that outperformed simple priority rules and, in some 

cases, more complex procedures. 

The integration of other planning problems in a production 

system in the context of job scheduling was already identified 

as a research topic in [6], but there is still little practical work 

on this topic in the area of multiagent or machine learning 

research. The basic approach of reinforcement learning, that 

the explicit objective function does not have to be known a-

priori, is used in the proposed method to address this open 

research question. 

3. Proposed method 

To solve the unknown objective function problem in this 

optimization problem, a MARL algorithm is proposed. This 

decentralized approach is intended to make the planning more 

resilient to disturbances. Two basic types of agents are defined. 

The first type of agent is assigned to production machines. 

These are able to request orders from a job registry in order to 

process them. Likewise, these agents have an overview of other 

agents in the production plant, including requested products, 

feasible production operations and the current progress in the 

production of the current product. In addition, they receive 

information about available transport units, their loading and 

current location. 

The second type of agent is assigned to transport units. 

These transport the requested products to the respective 

machines. For this purpose, they observe all requested 

products, the machines, the current processing progress and the 

current position of all other transport units. 

In addition to the agents assigned to the machines and 

transport units, there is a central coordination layer. This layer 

contains an overview of all orders and the production steps to 

be completed on them. The agents request information from 

this layer about all jobs that they can process according to the 

operations assigned to them. In doing so, the coordination layer 

ensures that the agents' decisions do not overlap due to 

messages arriving too late. The components of the scheduling 

system are shown in Figure 1. Here, jobs requested by the 

AGVs, i.e. the transport units, represent a subset of jobs that 

are requested by a machine agent. The internal time 

specification is process-oriented. This means that the system 

behavior is represented by processes, which can be understood 
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as a sequence of events with the associated sequence of 

activities [7]. 

A major problem in using reinforcement learning for 

scheduling problems is the variable number of products to be 

manufactured. When modeling as an observation space, the 

number of orders is reflected in the size of the input vector. This 

can be chosen as large as possible to allow a wide range of 

possible planning problems. However, this also leads to a large 

number of possible actions, which in turn leads to poorer 

convergence and longer training times.  

To circumvent this problem, the observation space is 

constantly limited to one possible order, and thus one possible 

action as output vector. For each machine, the agent iterates 

through all orders that this machine can process at this moment 

and assigns a continuous value v between [0,1] to each order. 

Once all possible orders have been evaluated, each order with 

the highest value is assigned to the corresponding machine. In 

case several machines have the same value, the order is 

assigned in sequence of the requesting machines. This avoids 

the problem of different sized order lists for a production 

system.  

The AGVs have a different observation space. They observe 

their current distance to all machines, their current loading 

state, the destination of their current loading, the current 

location of all products, the products requested by machines 

and the current processing state of all machines. They can also 

observe the current destination of other transport systems. The 

transport systems select the order they will transport next. The 

local path finding itself is planned by means of an A* algorithm 

based on the plant topology. 

In order to establish a reference between already made 

decisions, the previously made observation, including the made 

action, is fed to the agents as a stacked vector. 

In the concept, the production machines as well as the 

transport units receive Deep Learning based reinforcement 

learning agents. Due to the actions in the continuous domain, a 

proximal policy optimization algorithm was chosen [1]. This is 

particularly characterized by its adaptive KL penalty, to control 

the change of the policy at each iteration. It is characterized by 

its objective function (1).  

 

𝐿𝐶𝐿𝐼𝑃(𝜃) = �̂�𝑡[min(𝑟𝑡(𝜃)�̂�𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜀, 1 + 𝜀)�̂�𝑡)] (1) 

 

Here, 𝜃  represents the policy parameter, �̂�𝑡  notes the 

empirical expected value over a time series, and 𝑟𝑡 indicates the 

rate of probability under the respective new and old policies. 

�̂�𝑡  is the expected advantage at a time 𝑡  and 𝜀  represents a 

hyperparameter to be adjusted. 

4. Experiment setup 

The experiments were conducted in a simulation 

environment created using Unity. The production units, in the 

form of 4 production cells, and 2 AGVs had to solve a 

randomly generated production planning problem. This plan 

always consisted of 13 jobs, which were composed of the job 

types 1-3. The theoretical minimum production time, including 

final transport to the outgoing warehouse, is 554 time units. 

This production time assumes that all products are immediately 

transported to the next machine or the buffer store, i.e. that 

transport capacities are unlimited. Furthermore, changeover 

times are set to a constant value. This theoretical value is not 

practically achievable due to the restrictions on transport 

capacities and compliance with all due dates, but it provides a 

starting point for evaluating the performance of the used 

heuristics and reinforcement learning techniques. 

Target values of the evaluation are met deadlines and total 

completion time. In order to reduce the possible bias due to 

randomly generated orders, a test series of 100 runs is created. 

The average total completion time and the average negative 

latency are compared.  

The optimization objectives according to which the agents' 

rewards were designed are listed in Table 1. At the end of a 

planning run, all agesnts receive a positive reward based on the 

achieved 𝑚𝑎𝑥𝑗(𝐶𝑗)/554 and negative rewards for all products 

arriving after the deadline. 

Table 1: Optimization objectives considered in the setup for the experiments 

of the MARL in the proposed method 

Notation Description Meaning 

𝐶𝑚𝑎𝑥 max𝑗 (𝐶𝑗) Makespan/Max. 

completion time 

�̅� 1

𝑛
∑L𝑗 

Mean Lateness 

𝐿𝑚𝑎𝑥 max(𝐿𝑗) Max. Lateness 

 

The agents consist of identically constructed networks with 

5 deep layers and 512 completely connected neurons per layer. 

As learning rate 3 ∙ 10−4 was chosen. The agents were first 

trained sequentially over 8 million steps in isolation. In a 

second step the pre-trained networks were trained together in a 

multi-agent system for another 7 million steps. The training 

took 8 hours on the machine described in section 0. 

4.1. Production plant setup 

The problem can be described as a FJSSP. In a FJSSP an 

operation requires certain functions that one or more machines 

provide. That is, an operation can be processed on multiple 

machines if they meet the requirements. Thus, FJSSPs are a 

generalization of JSSPs, where the 𝑖th operation of job 𝑗 𝑂𝑗𝑖  
can be assigned to a set of machines 𝑀𝑗𝑖 ⊆ 𝑀. Here, the process 

Figure 1 Proposed MARL decision architecture for integrated machine and 

transport unit scheduling. 
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duration 𝑝𝑗𝑖𝑘 ∈ ℝ+ depends on the machine 𝜇𝑘 ∈ 𝑀𝑗𝑖  on which 

the operation is processed. 

In the test setup, there are 𝑀 = {𝑀1, 𝑀2, 𝑀3, 𝑀4} machines 

to which the operations 𝑂𝑖 , with process durations 𝑝𝑗𝑖𝑘 as listed 

in Table 2, are assigned. 

There are 3 basic types of products that need to be 

manufactured in the test scenarios. These have different 

operations that must be performed on them. The final 

production on machine 𝜇4 , which forms a bottleneck for 

comparison purposes, is always uniform. 

In addition, changeover times are incurred during 

changeover (the switch between feasible operations 𝑂𝑗𝑖). In this 

experiment, the changeover times were set to a constant value  

of 20. 

Besides the machines, there are also transport units 𝑇𝑛 ⊆ T 

with transport capacities 𝜅𝑛 ∈ ℕ. However, the transport times  

𝛾𝑛(𝑠𝑡) ∈ ℝ+ result dynamically from the current position 𝑠 of 

the transport unit 𝑇𝑛at time 𝑡, and thus cannot be determined 

in advance. For the test setup, the transport units 𝑇 = (𝑇1, 𝑇2) 
with capacities 𝜅1, 𝜅2 = 1 were chosen. 

Table 2 Exemplary FSJP instance for three jobs in the experimentation setup 

 

4.2. Technical setup 

The described system was programmed in C# and Python. 

In the RL problem, the environment, i.e. the production plant 

and the transport system, is programmed in C# in Unity. An 

implementation of the PPO algorithm is used as the learning 

algorithm. Academy was used as the basis of the agent's 

communication with the environment in Unity based on the 

work described in [2]. Through this, the observations, actions 

and rewards are passed between the learning algorithm and the 

environment. The hardware used was a desktop PC with an 

AMD Ryzen 3600 and an Nvidia RTX2070. 

 

5. Experiment results and discussion 

5.1. Experiment results  

As a reference to the multiagent system, according to the 

two target variables of the evaluation, the Shortest-Job-Next 

(SJN) and Earliest Due Date (EDD) heuristics are taken for the 

machines. For the transport units, a First Come First Serve  

(FCFS) heuristic and an RL agent were taken. This is noted as 

MDecisionrule  for the machines and TDecisionrule  for the 

transport units. The setup for the experiments are 𝑀𝑆𝐽𝑁 ×𝑇𝐹𝐶𝐹𝑆,  

𝑀𝐸𝐷𝐷 × 𝑇𝐹𝐶𝐹𝑆 ,𝑀𝑅𝐿 × 𝑇𝑅𝐿. Results of the experiments are shown in 

Figure 2. Also integrated in the diagram is the theoretical 

minimum of 554, if leaving out transport capacities.  

It can be seen that the RL based agent system performs up 

to 100 time units better than the heuristics. The average values 

of the different decision rules are shown in Figure 3. 

In a second experiment, all decision algorithms were cross 

paired with another agent for the transport units, respectively 

the combinations 𝑀𝑆𝐽𝑁 ×𝑇𝑅𝐿 ,  𝑀𝐸𝐷𝐷 × 𝑇𝑅𝐿  ,𝑀𝑅𝐿 × 𝑇𝐹𝐶𝐹𝑆  .While it 

did not change the results for 𝑀𝐸𝐷𝐷  and 𝑀𝑆𝐽𝑁  by a significant 

amount, the RL based machine realized longer completion 

times, as shown in Figure 4. 

Table 3 shows an overview of all measured targets for the 

described experiments.  

Table 3: Overall experimentation results for the agent pairs 𝑀𝑆𝐽𝑁 ×𝑇𝐹𝐶𝐹𝑆,  

𝑀𝐸𝐷𝐷 × 𝑇𝐹𝐶𝐹𝑆 ,𝑀𝑅𝐿 × 𝑇𝑅𝐿, 𝑀𝑅𝐿 × 𝑇𝐹𝐶𝐹𝑆 with the achieved mean total 

makespan 𝐶�̅�𝑎𝑥, mean lateness L̅ and maximum lateness Lmax. 

Decision rule 𝐶�̅�𝑎𝑥 �̅� L𝑚𝑎𝑥 

𝑀𝑆𝐽𝑁 × 𝑇𝐹𝐶𝐹𝑆  658,2 5,24 25,19 

𝑀𝐸𝐷𝐷 × 𝑇𝐹𝐶𝐹𝑆  672,09 0 0 

𝑀𝑅𝐿 × 𝑇𝐹𝐶𝐹𝑆  658 0 0 

𝑀𝑅𝐿 × 𝑇𝑅𝐿  634,03 0 0 

  Machine 

Job Operation 𝑀1 𝑀2 𝑀3 𝑀4 

𝐽1 𝑂1,1 10 15 - - 

𝑂1,2 15 10 - - 

𝑂1,3 - - 20 - 

𝑂1,4 - - - 30 

𝐽2 𝑂2,1 15 10 - - 

𝑂2,2 - - 20 - 

𝑂2,3 15 10 - - 

𝑂2,4 - - - 30 

𝐽3 𝑂3,1 10 15 - - 

𝑂3,2 - - 20 - 

𝑂3,3 10 15 - - 

𝑂3,4 - - - 30 

Figure 3 Visualization of the experimentation results for the agent pairs SJN 

[𝑀𝑆𝐽𝑁 ×𝑇𝐹𝐶𝐹𝑆] in blue, EDD[𝑀𝐸𝐷𝐷 × 𝑇𝐹𝐶𝐹𝑆] in orange and RL[𝑀𝑅𝐿 × 𝑇𝑅𝐿] 

with their respective mean total makespan C̅max in red. 

Figure 2 Overall view of the experimentation results for the agent pairs 

SJN [𝑀𝑆𝐽𝑁 ×𝑇𝐹𝐶𝐹𝑆] in blue, EDD[𝑀𝐸𝐷𝐷 × 𝑇𝐹𝐶𝐹𝑆] in orange and 

RL[𝑀𝑅𝐿 × 𝑇𝑅𝐿]. The theoretical minimum Min is added in red. 



 Author name / Procedia CIRP 00 (2021) 000–000  5 

 

 

Over the 100 test planning instances, it was found that the 

MARL system consisting of agents for the machines and the 

transport units can achieve shorter total completion times than 

other heuristics and can match the EDD heuristic in terms of 

lateness. It is particularly interesting that the combination of a 

RL controlled machines in the multiagent system in 

combination with RL controlled transport units achieves better 

results than a combination with a FCFS controlled transport 

system. The heuristics EDD and SJN, on the other hand, did 

not perform significantly worse or better in this case. 

5.2. Discussion 

The results achieved are well above the minimum of 554 

time units for all the processes used. However, since this value 

does not take into account constraints such as transport capacity 

limits and the physical location of the transport units, the 

limiting factor here is the coordination between the machines 

and the logistics. Here, a simultaneous planning of the machine 

scheduling and the transport units could show that such a multi-

agent system, based on deep reinforcement learning, is able to 

optimize such problems under multiple objectives. In terms of 

total completion time, the system was even able to undercut 

heuristics specifically designed for this purpose. It is 

particularly interesting that the RL logistics system achieves 

better results than an FCFS heuristic only when paired with an 

RL controlled machine.  

These results indicate that simultaneous planning of the 

machines and transport units offers further potential for other 

optimization criteria due to the interactions between them.  

The simple modeling of an optimization problem with such 

an approach is also interesting for practice. No formalized 

relationships between the components of a production system 

have to be derived. Thus, an explicit objective function does 

not have to be formulated. Only restrictions, like deadlines, and 

optimization variables, like the minimization of the completion 

time, must be manually set up. However, due to the 

implementation, this can be done by non-experts. Furthermore, 

additional event-driven optimization targets, like minimizing 

collisions between transport units, can be included. The main 

question here is the design of the positive and negative rewards. 

6. Summary and conclusion 

In this paper, a concept for simultaneous machine job 

scheduling with transport planning in a flexible job shop using 

a MARL algorithm was presented. The results obtained with it 

showed that MARL systems are able to optimize scheduling 

problems considering multiple objectives. In particular, the 

actual inclusion of the location of transport units, as it occurs 

with autonomous transport units, increases the transferability 

of such generated problems to real production systems.  

Future research will investigate how the integration of 

further planning areas affects the quality of the planning. The 

goal is thus a holistically planned production plant. 

Furthermore, the MARL system will be examined for reactive 

aspects, such as the failure of a machine. It is interesting to 

consider whether such systems reflect patterns known from 

lean manufacturing or whether new patterns in the scheduling 

of production systems are emerging. 
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