
Surrogate Model based Co-Optimization of Deep
Neural Network Hardware Accelerators

Hendrik Wöhrle
Department of Information Technology

Dortmund University
of Applied Sciences and Arts

Dortmund, Germany
hendrik.woehrle@fh-dortmund.de

Mariela De Lucas Alvarez
Department of Mathematics

and Computer Science
University of Bremen
Bremen, Germany

delucas@uni-bremen.de

Fabian Schlenke
Department of Information Technology

Dortmund University
of Applied Sciences and Arts

Dortmund, Germany
fabian.schlenke@fh-dortmund.de

Alexander Walsemann
Faculty of Electrical Engineering

Dortmund University
of Applied Sciences and Arts

Dortmund, Germany
alexander.walsemann@fh-dortmund.de

Michael Karagounis
Faculty of Electrical Engineering

Dortmund University
of Applied Sciences and Arts

Dortmund, Germany
michael.karagounis@fh-dortmund.de

Frank Kirchner
Department of Mathematics

and Computer Science
University of Bremen
Bremen, Germany

frank.kirchner@uni-bremen.de

Abstract—In this paper, we present an ASIC based on
22FDX/FDSOI technology for the detection of atrial fibrillation
in human electrocardiograms using neural networks. The ASIC
consists of a RISC-V core for supporting software components
and an application-specific machine learning IP core (ML-IP),
which is used to implement the computationally intensive infer-
ence. The ASIC was designed for maximum energy efficiency. A
special feature of the ML-IP is its modular, generic and scalable
design of the ML-IP which allows to specify the quantization
of each computational operation, the degree of parallelization
and the architecture of the neural network. This in turn allows
the use of ML-based optimization techniques to perform co-
optimization for hardware design and architecture of the neural
network (NNs). Here, a multi-objective optimization of the overall
system is performed with respect to computational efficiency at a
given classification accuracy and speed by using a multi-objective
optimization, which is carried out using a probabilistic surrogate
model. This model tries to find the optimal neural network
architecture with a minimum number of training, simulation and
evaluation steps.

Index Terms—FDX/FDSOI, hardware acceleration, deep learn-
ing, bayesian optimization

I. INTRODUCTION

Machine learning (ML), in particular Deep Learning (DL)
has achieved many successes in a variety of application
domains. In the last couple of years, applications of ML
and DL in embedded systems gained momentum. However,
other properties besides accuracy, such as energy efficiency
and model size, remain relevant. In many cases, the use of
dedicated hardware is the only way to meet the requirements.
Here, either generic hardware accelerators for neural networks
can be used, which support a variety of NN types, or it is

This work was supported by the Federal Ministry of Education and
Research (BMBF) in the KI-Sprung POMAA project under the Grants
16ES1139K and 16ES1140.

possible to use dedicated hardware developed for the specific
application in the form of an ASIC. In most cases, much more
demanding requirements can be met by an ASIC.

The performance of ML algorithms depends on many
factors. A particularly important one is the set of chosen
hyperparameters [1]. Specifically for NNs, there are many
hyperparameters to be determined related to architecture,
regularization, learning rate etc. All these impact the accuracy
and efficiency of the network. Classical optimization methods
to determine hyperparameters such as Grid Search or Random
Search [2] are inefficient for hyperparameter determination
for DL, because the evaluation of the objective function, e.g.
training of a NN, is very expensive.

Another case where the evaluation of the objective function
is very expensive is the design space exploration of an ASIC.
Due to the high complexity of the ASIC design process, meth-
ods that support the development of application-specific NN
accelerators are urgently needed. It is essential to determine
the configuration of the NN in such a way that conflicting
requirements can be fulfilled, such as high accuracy and energy
efficiency. Afterwards, the ASIC design and NN hardware ac-
celerator are automatically generated for evaluation. Bayesian
Optimization (BO) [3] models an objective function using a
probabilistic surrogate function and can be used to reduce the
number of objective function evaluations. Hence, it is well
suited for expensive optimization problems.

The contributions of this paper are twofold. First, we devel-
oped a highly configurable hardware architecture to generate
hardware representations of neural networks for time series
classification. Second, we present an approach that integrates
NN hyperparameter optimization and training, ASIC genera-
tion and evaluation in order to find a accelerator configuration
that is at the same time optimal regarding NN classification

978-1-6654-2461-5/21/$31.00 ©2021 IEEE 40

20
21

 IE
EE

 In
te

rn
at

io
na

l M
id

w
es

t S
ym

po
si

um
 o

n
C

irc
ui

ts
 a

nd
 S

ys
te

m
s (

M
W

SC
A

S)
 |

97
8-

1-
66

54
-2

46
1-

5/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
M

W
SC

A
S4

76
72

.2
02

1.
95

31
70

8

accuracy and energy efficiency. We evaluate the proposed
approach in a biomedical application, where the goal is to
detect atrial fibrillation in human electrocardiograms.

II. STATE OF THE ART

A. Bayesian Optimization

BO [3] models an objective function based on already
seen data points, (x0, y0), ..., (xi−1, yi−1) with the help of
a surrogate function, where X = X1 × ... × Xn is an n-
dimensional decision space, and yi are the usually noisy
observations of an expensive objective function f : X → R.
The surrogate function can be modeled using probabilistic
methods, such as Gaussian processes [4], with the draw-
back that they use complex and computationally expensive
approximation methods and are primarily suitable for model-
ing continuous parameter spaces. An alternative is the Tree
Parzen Estimator (TPE) [5], which can also model discrete,
categorical, and conditional parameter combinations. The TPE
uses a kernel density estimator to model the densities over the
input configuration space rather than the objective function for
a single objective directly by p(x|y).

Multi-objective optimization can be performed with an
approach that integrates BO adapted to address multiple goals
[6]. This problem is formulated as

minimize y := f(x) = (f1(x), ..., fm(x)) subject to x ∈ X
(1)

where fi : X → Rm is a m-dimensional objective function.
In many applications, objectives conflict with each other.
In our case, e.g., we aim to optimize for minimal model
loss and minimal number of computations. In this manner,
we aim to obtain a set of Pareto-optimal solutions with a
minimal number of evaluations of f . The Multi-Objective
TPE (MOTPE) extends the TPE with the following probability
density functions,

p(x|y) =

{
l(x) if y � Y ∗ ∪ y||Y ∗

g(x) if Y ∗ � y
(2)

where Y ∗ is a set of objective vectors that satisfy p(y � Y ∗∪
y||Y ∗) = γ. The probability density function l(x) refers to the
observed decision vectors {x(i)} that satisfy y(i)(= f(x(i)) �
Y ∗ or y(i), while g(x) models the remaining vectors.

These probability functions are tree-structured hierarchical
processes constructed using adaptive Parzen estimators [5].
The observations are split into Dl and Dg by sorting them
based on the y values. The TPE employs the following Ex-
pected Improvement (EI) function as the acquisition function,

EIy∗(x) :=

(
γ + (1− γ)g(x)

l(x)

)−1
(3)

Multiple candidates are sampled from l(x), the best candi-
date x with the largest EI value is selected in each iteration. By
not using all observations TPE is more computationally more
efficient. Theoretically, MOTPE constructs models in the same
way the standard TPE does by implementing an algorithm
that splits observations. This algorithm uses Y ∗ such that

(y � Y ∗ ∪ y||Y ∗) = γ to split the observations into subsets
for l(x) and for g(x). Practically, the observations are directly
split for a specific γ in a greedy two step algorithm. The first
step appends better non-domination ranked data points to the
largest extent possible to Dl. The second step appends the
set obtained as a result of the Hypervolume Subset Selection
Problem (HSSP) [7] to Dl. HSSP solves the problem of finding
a subset of a specific size that maximizes the hypervolume
indicator with a given reference point. HSSP is known to be
a sub-modular maximization and therefore possible to obtain
a 1− 1/e approximation via the greedy method [8].

B. Hardware Accelerators for Neural Networks

Designing accelerators for NNs has recently received in-
creasing interest in industry and academia [9] [10]. However,
in general these accelerators are domain specific accelerators
that target a whole class of neural networks, while the op-
timization of an NN accelerator architecture for a specific
problem is rarely used. Since many embedded systems are
designed for a single application, our goal is to provide a
hardware architecture that is highly optimized for the target
problem.

III. NEURAL NETWORK TEMPLATE ARCHITECTURE

First, it was important to identify a suitable NN template
architecture for ECG sequence classification that obtains a
high classification performance and has a comparatively sim-
ple structure. We used a Fully Convolutional Network (FCN)
[11], which consists entirely of one-dimensional convolutional
(Conv1D) layers without local pooling. The FCN was modified
for use in the ASIC as follows (see also Fig. 1). First, the input
Conv1D layer was replaced by a dilated convolution to sub-
sample the data and reduce the memory requirements and com-
putations. Second, the global average pooling was replaced
by a global max pooling to avoid division operations. Third,
to avoid unnecessary computations, the Conv1D layers and
subsequent Batch Normalization (BN) [12] can be combined
after the training of the network. The new weights and biases
of the Conv1D layer can be calculated as wfold := γw√

σ2+ε

and bfold := γ b−µ√
σ2+ε

+ β. Finally, the number of filters,
size of convolution kernels and dilation factor were used as
configurable hyperparameters in the architecture optimization.

IV. SYSTEM ARCHITECTURE

A. High-Level Architecture of the System

As shown in Fig. 2, the system has been implemented as a
microcontroller unit containing a generic RISC-V CPU and a
dedicated NN IP-Core. The CPU controls system operation
and performs general software tasks. The CAECO NN-IP
(see Section IV-B) is connected to the RISC-V core memory
bus and can be accessed via memory-mapped registers. An
additional data path has been integrated, to pass data directly
to the CAECO via a data buffer. This buffer is populated with
classification data and weights via a JTAG interface that is part
of the RISC-V core, which is then transferred into the CAECO
via an AXI-Stream interface. The same JTAG interface is also

41

In
pu

t
1

D-
C

on
vo

lu
tio

n
fil

te
rs

=
f1

,
ke

rn
el

_s
iz

e=
k1

di

la
tio

n=
d

Ba
tc

h-
N

or
m

al
iza

tio
n

Re
lu

Ba
tc

h-
N

or
m

al
iza

tio
n

Re
lu

Ba
tc

h-
N

or
m

al
iza

tio
n

Re
lu

G
lo

ba
l M

ax

Po
ol

in
g

Fu
lly

 C
on

ne
ct

ed

(F
C

) L
ay

er

O
ut

pu
t

1
D-

C
on

vo
lu

tio
n

fil
te

rs
=

f3
,

ke
rn

el
_s

iz
e=

k3

1
D-

C
on

vo
lu

tio
n

fil
te

rs
=

f2
,

ke
rn

el
_s

iz
e=

k2

Fig. 1. Template NN-architecture based on the 1D Fully Convolutional Network [11].

CORE_SRAM1/2

GPIO

UART

RISC-V
Core

JTAG
DTM

Data_SRAM00-11

Weight_SRAM0-4

DNN_SRAM
CAECO

BUS
mux

mcu_top

mcu_top_padframe

caeco_led

UART_TX UART_RX

gpio[31:0]

TDI/O

TCK
TMS

AXI Slave

Datenpuffer

AXI MasterBuffer_SRAM 0-15

CLK RST

Fig. 2. Block diagram of the system architecture

used to program the RISC-V core. SRAM memory is provided
to the RISC-V core to store data and instructions using a von-
Neumann approach and is multiplexed onto the core’s data and
instruction buses. In addition, the system has 32 GPIOs and a
UART interface. The software reports system availability after
programming via an UART message. Upon completion of a
classification, the CAECO triggers an interrupt that causes the
RISC-V core to send a new message over the UART interface.
The entire system is clocked at 10 MHz. All components
relevant for the evaluation of the energy efficiency of the
CAECO were grouped under the mcu top instance at the top
design level. All other components, such as the I/O and supply
pads the SRAM modules of the data buffer and the master of
the AXI interface are located outside the mcu top instance
on the top hierarchy level of the design mcu top padframe.
The used RISC-V core is a customized version of the Z-
scale project [13], which has low complexity and power
consumption. Accordingly, the RISC-V core offer the RV32IM
basic instruction set with multiplication expansion and has a
three-stage single-issue in-order instruction pipeline. The core
supports 3 different interrupt sources and allows the integration
of periphery devices and the instruction and data memories via
AHB-Lite buses.

B. Architecture of the Hardware Accelerator

To implement the NN IP-Core, we developed a generator
that can create configurable hardware architectures for 1D
convolutional neural network, called Configurable Accelerator
Engine for Convolution Operations (CAECO).

1) Base architecture: The CAECO consists of the follow-
ing main components (see Fig. 3). A streaming interface based
on AXI-Stream is used to input data and weights. Registers can
be used to set operating mode (configuration or classification)

and read results. Directly connected to the streaming interface
is the unit for implementing the dilated convolution of the
first layer and the normalization of the data. A data buffer
contains the data that will be reused during a convolution
operations at a given time. Four Processing Elements (PE)
are shown as PE 0. . . PE3), as shown in Fig. 3, are used to
compute the network layer activations via multiply-accumulate
operations. In total p + 1 memories with 1024 words and 8
bit word length are used to store the weights of the neural
network, from which p memories store the filter weights of
the Conv1D layers and a single memory stores the weights
of the fully connected layer and the bias values of all layers.
The memories can be configured with new weights via the
streaming interface. The activations computed by the PEs are
serialized in the Activation-Unit via a shift register. Then,
the bias values are added and and a Rectified Linear Unit
(ReLU) activation function is applied. The intermediate results
of one layer of the network are buffered in a Data Storage,
consisting of 4 storage elements with 4096 32 bit words each.
The coordination of the different elements is controlled by the
Control Finite State Machine (FSM).

2) Resolution optimization: All operations in CAECO use
fixed-point numbers with minimal word width. For this, we
used the Dynamic Fixed Point (DFP) [14] format that was
based on a similar approach that exists for classifying image
data using 2D Convolutional Networks [15]. The DFP format
uses a different quantization for each layer of the FCN, for
input values as well as for weights and biases. One of the
main changes to this approach is a change to the ReLU
activation function. The output activations of the ReLU were
limited to a range of 0 to 1, for which we did not observe a
substantial decrease in classification accuracy. This allows to
use the same fixed-point quantization in the activation of each
layer. However, the value range of the weights and biases is
larger and differs between layers (as shown in Table I). In this
example, to cover the complete range of values, 4 integer bits
are needed for the first Conv1D layer and the FC layer and
3 integers for the other layers. The DFP quantization allows
us to reduce the word width of the data and weights to 8 bits
without a major loss in classification performance compared
to a floating-point TensorFlow model. For the intermediate
values 16 bits are used so that the larger range of values
resulting from the multiplication can be covered. The fixed
point format used for these values depends on the format used
for input values and weights. After the ReLU activation the
values are reduced to 8 bits.

For further improvements, we applied the following opti-

42

Activation Unit

DNN/Bias Storage
1 2 34 …

Streaming
Input

Result
O

rdering

R3
R2

R1
R0

+

102 2 101 1 0 0
Data-Buffer

103 3

Data Storage

… 114 14 113 13 112 12
111 11 110 10 109 9 108 8

106 6 105 5 104 4107 7

Filters 0, 4, 8, 12, 16…

PE 0

Weight Storage PE0
1 11 2 12 3 13 4 14

PE 1

Filters 1, 5, 9, 13, 17…
Weight Storage PE1

21 31 22 32 23 33 24 34

PE 2

Filters 2, 6, 10, 14, 18…
Weight Storage 1 Layer 1

PE 3

Filters 3, 7, 11, 15, 19…
Weight Storage 1 Layer 1
61 71 62 72 63 73 64 74

41 51 42 52 43 53 44 54

DilationNormali-
sierung

R0
R1

R2
R3

Control
FSM

2 3

W
SDB

WSDB

Fig. 3. Schematic representation of the CAECO

Layer wmin wmax bmin bmax

1st Conv1D -7.4727 6.3586 -1.2847 0.9688
2nd Conv1D -2.5471 2.5258 -1.2987 0.6000
3rd Conv1D -1.7824 1.0335 -2.3894 2.5535

FC -4.0998 4.5852 -0.6542 0.6542
TABLE I

VALUE RANGES OF THE WEIGHTS ON ALL LAYERS OF THE FCN

Fig. 4. Layout representation of the chip die in Innovus implementation tool

mization procedures. First, the input data was limited to a
range between -1 and 1 by clipping. Second, in addition to
the normalization of the data, the BN also performs centering
and scaling, which increases the value range and hence the
necessary number of integer bits for a fixed-point representa-
tion. Since a scaling of the values is already performed by the
ReLU activation, additional scaling can be omitted.

C. Implementation Details and Simulation Methodology

To evaluate the energy efficiency of the hardware ar-
chitecture, the ASIC shown in Fig. 4 has been developed
in 22nm FDSOI CMOS technology in Globalfoundries. It
uses the 10M 2Mx 5Cx 1Jx 2Qx LB metal stack and has
an area of 1.5mm × 1.5mm, according to the proporties
of Mini-ASICs for MPW production at Europractice. The
Synopsys Designware 6.75 track 116m pitch standard cell
libraries gf22nsdllogl20-36edp116a with transistor channel

lengths between 20 and 36 nm were used for implementation.
ThRedwood City, CAe 3.3V I/O cells and supply pads from
the Synopsys Designware Area Efficient GPIO library are
used in the pad ring (dwc io in 3p3v ae gpio fs). Memory
for the data buffer was generated using the DesignWare
SiWare Automotive Grade 1 Single Port High Density and
Performance Leakage Control SRAM 2M Sync compiler.
The SRAM modules in the RISC-V core and CAECO have
been generated with the Synopsys Ultra-Low-Leakage Single-
Port SRAM, Low-Leakage Periphery (S1H) compiler. The
RISC-V core uses two 4096×32Bit SRAM modules as a
32kByte shared data and instruction memory. In the CAECO,
a total of four 4096×32bit SRAM modules are used for the
classification data and five 1024×8bit SRAM modules are
used for the weights. The data buffer consists of sixteen
4096×32bit SRAM modules. All memories go into a sleep
or power gate mode while maintaining data to reduce leakage
current consumption. As can be seen from the floor plan, most
of the chip area is occupied by the memory modules. The
design consists of 57293 standard cells, which occupy a total
area of 22029,423 µm2. The chip density is 58% while the
standard cell density is just 3.303%. Synthesis with Genus
was performed with highest leakage optimization effort and
clock gating enabled. With a count of 5884 registers, 437
clock gates were inserted, resulting in an average clock tree
power consumption saving of 43.14%. The conditions used
in synthesis, place & route (P%R) and power simulation are
listed in Tab. II and III. In power simulation of the post P%R
netlist using the Xcelium simulator, the program memory of
the RISC-V core, the buffer memory and the weight memories
are preloaded. The input data is transferred from the buffer
memory to the CAECO for classification. The simulation
ends when the result is available. The signal delay times of
the implementation at nominal conditions are exported as an
SDF file from Innovus and used in Xcelium to annotate all
signals. The signal waveforms are exported in TCF format
and imported into Voltus for power consumption calculations.
Voltus Static Power Engine was used following the Vector-
based Average Power Calculation method. The vectors are
taken from the simulation results recorded in the TCF file.

43

View Corner VDD /mV Temp(°C) Parasitics

av typ TT 0.80 25 nominal
av max SSG 0.72 125 FuncRCmax
av min FFG 0.80 -40 FuncRCmin

TABLE II
USED PLACE & ROUTE VIEWS

Tool Corner VDD /mV Temp(°C)

Synthesis SSG 0.72 125
Power TT 0.80 25

TABLE III
PARAMETERS USED IN SYNTHESIS AND POWER SIMULATION

Consumption Type Mean(mW) Standard Deviation (mW)

Internal 0.133831579 0.000224904
Switching 0.027555789 0.00015274
Leakage 0.017816842 7.98 ∗ 10−6

Total 0.179194737 0.000373425

TABLE IV
MEAN VALUES AND STANDARD DEVIATION OF POWER CONSUMPTION BY

TYPE IN mW.

V. EVALUATION RESULTS

The dataset used for the evaluation is an ECG study
provided by the Charite hospital [16]. It contains of 16,000
recordings of 2 min duration, recorded at 512 Hz. 8,000 exam-
ples correspond to sinus rythm and 8,000 to atrial fibrillation.
For evaluation, the dataset was randomly split into a training
dataset (80%) and validation dataset (80% of the data).

A. Multi-Objective Optimization

The following results were obtained in a MOPTE study for
the following three criteria:

min
x
FLOPs(x), max

x
TPR(x), TNR(x) (4)

where x are the configurable hyperparameter values shown
in Fig. 1. During the training of the network, the dilation
was extended to support data augmentation by generating new
training examples that contain all data points that that would
otherwise be discarded by the dilation operation. Fig. 5 shows
the Pareto plot of a total of 160 finished trials. We safety
margins of TPR> 95% and TNR> 0.9%, i.e. desired minimal
classification performances. As observed, the MOTPE strategy
was successful in finding NN’s with acceptable objective
values. The best MOTPE configuration corresponds to filters
{8, 8, 8} and kernel sizes {3, 3, 5} for each layer respectively.
This network achieved 97.18%, 96.56%, 90.84% and 1.92M
for TNR, TPR, Accuracy and FLOPs, respectively.

B. Final Classification and Functional Verification

A new neural network was trained on the entire dataset with
the selected hyperparameters. The weights of the NN were ex-
tracted and converted using the steps shown in Section IV-B2

for fixed-point arithmetic. Subsequently, RTL simulations of
the CAECO were performed on all 16, 000 given data sets
and achieved a TPR of 95.07% and a TNR of 98.04%. These
values differ slightly from those obtained before, because they
represent the reproduction error of the NN trained on the entire
data after fixed-point conversion and using RTL simulation.
For the chosen network configuration and clock frequency,
each classification requires exactly 30.3343ms for completion.

C. Energy efficiency

The final evaluation concerns the determination of energy
efficiency on 20 different ECG examples. For this purpose,
post-place and route simulations were performed and power
consumption was determined using Voltus. The data includes
the values of the power consumption of the RISC-V core
and the CAECO as well as all subcomponents, while the
power consumption of the required data buffer and the pad
ring was not considered. The results for the estimation of the
power consumption are shown in Tab. IV. The total power
consumption are 180 µW. In first place are the memories for
the weights of the network, whose power consumption is in
turn significantly determined by the Internal Power. It can
be concluded from this that the data transfer of the weight
data from the SRAMs into the logic of the accelerator is the
determining factor of the power consumption of the CAECO.
This is immediately followed by the SRAM in which the
instruction data of the RISC-V core is stored and constantly
accessed during execution and the 4 SRAMs in which the
intermediate results of the CAECO are stored. After the
SRAMs take drivers of the global clock tree (CTS*) and driver
cells of the data RISC-V AHB-Lite data bus. The next instance
assigned to the CAECO is only at the sixtieth position in the
Voltus Report sorted by descending power consumption and
is a driver for the data signals which are fed from the data
buffer into the CAECO.

VI. CONCLUSIONS AND IMPROVEMENT OPTIONS

In this paper, we showed that high-level optimization using
machine learning methods enables the identification of accu-
rate and computationally efficient NN architectures, which are
also suitable for ML hardware accelerators. Moreover, a highly
configurable hardware accelerator for time series classification
has been developed with CAECO, which directly translates
such an NN architecture into an RTL hardware description that
could be successfully used in an ASIC. However, a number
of further optimization possibilities arise.

A. Further improvements to the CAECO

Currently, it is possible to specify the CAECO architecure
before synthesis with respect to numerous properties (number
of channels, PEs, . . .), while the weights can also be changed
later. In future, we want to make the structure of CAECO
itself configurable (e.g. number/sizes of layers and size filters)
within certain limits (e.g., limited by internal memories sizes).

44

Fig. 5. Multi-Objective Tree Parzen Estimator trials pareto plot for TPR and TNR.

B. Future Improvements of the ASIC architecture

A possible improvement of the ASIC architecture would
be to introduce a second independent supply domain with
its own power pad for all components to be able to validate
the predicted power consumption after production of the chip.
Furthermore, it should be verified whether the system can be
implemented at lower nominal voltage than 0.8V in sign-off
quality to reduce the power consumption. The exploitation
of the body bias feature of the technology is currently not
used and power management based on dynamic frequency and
voltage scaling was not integrated into the design. Here, the
supply voltage and the clock frequency can be dynamically
controlled so that the system is supplied with the minimum
power required to perform its tasks. Initially, a design of a
voltage regulator including band-gap voltage reference and
biasing network for a maximum load current of 200mA
and quiescent current < 1% was created at schematic level.
However, it was not integrated into the system since initial
power simulations that the quiescent current of this block was
above the average current draw of the current system.

C. Improvement of Multiobjective Optimization

The optimization approach used shows that it is possible to
find NN architectures that are energy efficient while retaining
good classification results. Meaningful next steps would be
the integration of the MOTPE optimization into the full ASIC
design flow to include further parameters of the ASIC design
into the optimization. Here, we expect further significant
improvements in energy efficiency.

D. Further Potential Applications

Altough the experiments in this work were performed using
ECG data, the relevance of this technology is transferable to
other applications, like EEG and EMG processing [17]. An
application in the field of rehabilitation robotics would be in
prosthetics and exoskeletons [18], where local processing of
biosignals is mandatory to guarantee the mobility of a patient.

REFERENCES

[1] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” Advances in Neural Information
Processing Systems, 2012.

[2] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Opti-
mization,” Tech. Rep., 2012.

[3] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the Human Out of the Loop: A Review of Bayesian Optimiza-
tion,” Tech. Rep., 2016.

[4] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine
learning. MIT Press Cambridge, MA, 2006, vol. 2, no. 3.

[5] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for Hyper-
Parameter Optimization,” Tech. Rep., 1994.

[6] Y. Ozaki, Y. Tanigaki, S. Watanabe, M. Onishi, and M. . Onishi,
“Multiobjective Tree-structured Parzen Estimator for Computationally
Expensive Optimization Problems,” Genetic and Evolutionary Compu-
tation Conference (GECCO), p. 9, 2020.

[7] J. Bader and E. Zitzler, “HypE: An algorithm for fast hypervolume-based
many-objective optimization,” Evolutionary Computation, vol. 19, no. 1,
pp. 45–76, 2011.

[8] A. P. Guerreiro and C. M. Fonseca, “Greedy Hypervolume Subset
Selection in Low Dimensions,” Evolutionary Computation, vol. 24,
no. 3, pp. 521–544, 2016.

[9] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[10] M. Capra, B. Bussolino, A. Marchisio, M. Shafique, G. Masera, and
M. Martina, “An updated survey of efficient hardware architectures
for accelerating deep convolutional neural networks,” Future Internet,
vol. 12, no. 7, p. 113, 2020.

[11] Z. Wang, W. Yan, and T. Oates, “Time Series Classification from Scratch
with Deep Neural Networks: A Strong Baseline,” in International joint
conference on neural networks,, 2017, pp. 1578–1585.

[12] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” 2015.

[13] Y. Lee, A. Ou, and A. Magyar, “Z-scale: Tiny 32-bit RISC-V Systems,”
in 2nd RISC-V workshop, 2015.

[14] P. Gysel and S. Ghiasi, “Hardware-oriented approximation of convolu-
tional neural networks,” 04 2016.

[15] C. Y. Lo, F. C. M. Lau, and C. Sham, “Fixed-point implementation
of convolutional neural networks for image classification,” in 2018 In-
ternational Conference on Advanced Technologies for Communications
(ATC), 2018, pp. 105–109.

[16] F. Koehler, S. Winkler, M. Schieber, U. Sechtem, K. Stangl, M. Böhm,
H. Boll, S. S. Kim, K. Koehler, S. Lücke et al., “Telemedical inter-
ventional monitoring in heart failure (tim-hf), a randomized, controlled
intervention trial investigating the impact of telemedicine on mortality in
ambulatory patients with heart failure: study design,” European Journal
of Heart Failure, vol. 12, no. 12, pp. 1354–1362, 2010.

[17] H. Wöhrle, M. Tabie, S. K. Kim, F. Kirchner, and E. A. Kirchner, “A
hybrid FPGA-based system for EEG- and EMG-based online movement
prediction,” Sensors (Switzerland), vol. 17, no. 7, jul 2017.

[18] S. Kumar, H. Wöhrle, M. Trampler, M. Simnofske, H. Peters, M. Mall-
witz, E. A. Kirchner, and F. Kirchner, “Modular design and decentral-
ized control of the RECUPERA exoskeleton for stroke rehabilitation,”
Applied Sciences (Switzerland), vol. 9, no. 4, feb 2019.

45

		2021-09-09T14:50:26-0400
	Preflight Ticket Signature

