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Abstract

Misunderstandings occur all the time in human
conversation but deciding on when to ask for
clarification is a challenging task for conversa-
tional systems that requires a balance between
asking too many unnecessary questions and run-
ning the risk of providing incorrect information.
This work investigates clarification identifica-
tion based on the task and data from (Xu et al.,
2019), reproducing their Transformer baseline
and extending it by comparing pre-trained lan-
guage model fine-tuning, prompt tuning and
manual prompt engineering on the task of clar-
ification identification. Our experiments show
strong performance with a joint LM and prompt
tuning approach with BERT and RoBERTa,
outperforming LM fine-tuning, while manual
prompt engineering with GPT-3.5 proved to
be less effective, although informative prompt
instructions have the potential of steering the
model towards generating more accurate expla-
nations for why clarification is needed.

1 Introduction

Humans often communicate when they do not un-
derstand something and are able to collaboratively
avoid and resolve misunderstandings by clarify-
ing them. Clarification questions can be used to
establish common ground between interlocutors
(Clark and Brennan, 1991). Effectively repairing
misunderstandings would be a desirable feature for
conversational systems, thereby keeping the con-
versation between user and system as natural and
efficient as possible. As noted by Rahmani et al.
(2023), understanding users’ underlying needs is
critical for conversational systems, where the in-
put is often limited to short questions. When sys-
tem confidence in user intent is low, a clarifica-
tion request (CR) should be generated to resolve
ambiguity. However, handling uncertainty in con-
versational systems moves along a thin line be-
tween over- and under-generation of clarification

(Skantze, 2007). Asking too many or unnecessary
clarification questions can lead to user frustration
(Xu et al., 2019), while asking too few runs the
risk of providing the user with incorrect informa-
tion. Hence, clarification request identification is
an important task for conversational systems and
it may also rely on additional information coming
from a knowledge base (KB), as in the CLAQUA
(Xu et al., 2019) dataset used in this work. We
focus on clarification in a knowledge-based ques-
tion answering (KBQA) setting and compare three
approaches for modelling clarification identifica-
tion with CLAQUA: pre-trained language model
fine-tuning, prompt tuning and manual prompt en-
gineering.

2 Related Work

While research on clarification in conversational
systems was for a long time held back by a lack
of datasets (Xu et al., 2019; Kumar and Black,
2020), Rahmani et al. (2023) now observe a grow-
ing number of research approaches and datasets on
the topic. Datasets for clarification in question an-
swering (QA) systems include RaoCQ (Rao and III,
2018) and ClarQ (Kumar and Black, 2020), built
from StackExchange posts. Qulac is a dataset for
conversational search introduced by Aliannejadi
et al. (2019) and CLAQUA (Xu et al., 2019) sup-
ports clarification identification with a knowledge
base.

Several approaches focus on identifying ambi-
guity in user queries to improve performance of
KBQA systems. Wu et al. (2020) predict whether
system confidence is high enough to answer the
query before the user is asked to choose from a list
of possible relevant entities. Guo et al. (2021) study
to which extent neural models can generate CRs in
conversational QA and introduce the Abg-CoQA
corpus for clarifying ambiguities in reading com-
prehension questions. The NeurIPS NLP Shared



Task (Kiseleva et al., 2022) also addresses the prob-
lem of when the agent should ask for clarification
using a simulated Minecraft environment to bench-
mark different models.

3 Experiments

Our work compares three different approaches of
leveraging pre-trained language models (PLMs) for
clarification identification in a KBQA system: lan-
guage model (LM) fine-tuning, manual prompt en-
gineering with large language models (LLMs) and
prompt tuning. The task is to determine whether
a CR is needed or the context already provides
enough information to decide for which entity to
answer the question.

3.1 Data and Methodology

The public release of CLAQUA1 Xu et al. (2019)
was used in all our experimental settings. The
statistics of the publicly released data differ from
the published version and are shown in Table 5 in
Appendix A.1. CLAQUA consists of dialogues be-
tween a user and a KBQA system. The need for
clarification arises through user questions which
seem ambiguous at first glance. The corpus is split
between single- and multi-turn dialogues. In the
single-turn case, the ambiguity stems from an am-
biguous entity label, that could refer to two entities
in the KB which share the same surface string. In
the multi-turn data, it comes from an unresolved
referent, which could refer to either one of two pre-
viously mentioned entities. A multi-turn example
from Xu et al. is:

A1: What is the name of the game played on
Windows?
C2: “Insane.”
A3: Who is its developer?

where “its” could refer to either the game or the
operating system because both have a developer for
which the question could be answered. Clarifica-
tion identification is modelled as a binary classifica-
tion task that relies on the context information that
includes current (and previous, in the multi-turn
case) conversation turn(s) and entity text descrip-
tions.

Xu et al. (2019) provide a task baseline for clari-
fication identification with several models includ-
ing a Transformer (Vaswani et al., 2017) trained

1https://github.com/msra-nlc/MSParS_V2.0

from scratch, but not yet a pre-trained Transformer-
based LM. Nowadays, the use of PLMs leads to
substantial progress on many NLP tasks (Brown
et al., 2020). We explore PLM fine-tuning, manual
prompt engineering and prompt tuning, compar-
ing them to a Transformer baseline from Xu et al.
(2019) reproduced for this work.

3.1.1 Fine-tuning
PLMs implicitly store a certain amount of knowl-
edge acquired in pre-training (Roberts et al., 2020).
This can be leveraged in a fine-tuning process on
a downstream task, posing a convenient alterna-
tive to training a model from scratch. Using the
HuggingFace (Wolf et al., 2020) library, we fine-
tuned four models: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), AlBERT (Lan et al.,
2020) and DistilBERT (Sanh et al., 2019). Clar-
ification identification is modelled with only the
context and entity text descriptions, without any
KB entity attributes. Input items are concatenated
with separator tokens:

[CLS] CONTEXT [CON_SEP] ENTITY1 TEXT

[ENT_SEP] ENTITY2 TEXT [SEP]

A maximum input length of 300 tokens was cho-
sen, truncating from both entity text descriptions
where necessary, and the PLMs were fine-tuned
with task-specific heads in the form of linear classi-
fication layers. Details on model architecture and
hyperparameters can be found in A.2.

3.1.2 Manual Prompt Engineering
Open AI’s GPT models, such as GPT-3 (Brown
et al., 2020) and GPT-4 (OpenAI, 2023b), have
recently gained remarkable success through their
publicly available tool ChatGPT (OpenAI, 2023a).
The LLMs are capable of inference processes: it
is possible to let the model solve a task in a zero-
shot setting, without fine-tuning or training a model
from scratch. The textual inputs to the models, used
for eliciting output in response to data and task, are
called prompts.

Our manual prompt engineering experiments
were conducted with the gpt-3.5-turbo model2.
Its training data is up to September 2021, meaning
that the CLAQUA corpus published in 2019 might
have been included in the training data, which
could give the model an advantage regarding clari-
fication identification performance.

2https://platform.openai.com/docs/models

https://github.com/msra-nlc/MSParS_V2.0
https://platform.openai.com/docs/models


P0 P1 P2 P3
Out Classification 51 51 51 51

Explanation - 51 51 51
In Context + entity

descriptions
51 51 51 51

Split previous and
current turn

51 - - 51

Detailed
task instruction

- - 51 51

Task instruction
incl. previous turn

- - - 51

Table 1: Manual prompt engineering: Prompt0-3 (ab-
breviated as P0-3 in the Table), characterised based on
output they ask for and input they provide.

The GPT-3.5 model was prompted with several
task formulations, described in Table 1. The four
prompts differ with regard to the output they are
asked to provide as well as the input they receive
with it. The full prompts can be found in Ap-
pendix A.3. All prompts ask whether clarification
is needed for a given data item. Three prompts
(Prompt1-3) additionally request an explanation.
Two prompts (Prompt2&3) provide a detailed task
instruction: in the prompts, it is explained how
ambiguity arises in this specific task scenario and
which steps are needed to reach a decision, fol-
lowed by the question whether a clarification re-
quest is needed given the current data item. The
steps include considering the entity text descrip-
tions and deciding - based on the context provided
through the conversation turn(s) - whether the user
question is ambiguous in that it could be answered
for both entities (need for clarification) or unam-
biguous in that the context implicitly specifies to
which entity the question applies (no need for clari-
fication). Prompt3 is especially tailored to and only
used for the multi-turn data, as its task instruction
includes reference to the previous turn. The GPT-
3.5 responses were evaluated for the correctness of
their classification decisions, explanations as well
as the following phenomena. For examples of the
phenomena, see A.3.2.

• Hallucination: Based on the general defini-
tion of hallucination (for example, Ji et al.
(2023)) in model-generated responses, defined
as statements which are not supported by the
external knowledge source, here: context and
entity descriptions.

• Omission: The prompt response holds a state-
ment which is not fully explained, e.g. the
model jumps to a conclusion and leaves out
important steps in the argumentation.

• Incoherence: The prompt response is not co-
herent, e.g. states something which is then
negated or not in line with other statements in
the response.

• Focus-deviation: The prompt response fails
to produce an explanation which fits the
task of clarification identification with the
CLAQUA corpus.

The generative model was prompted with the role
of “user” and the temperature (degree of random-
ness) was set to 0, as recommended for tasks that re-
quire reliability and predictability3, which applies
to a conversational system. The input information
is the same as in the fine-tuning experiments, ex-
cept for the length of the entity descriptions since
GPT-3.5 can process longer inputs than e.g. BERT
and the entity text descriptions were not truncated.
An example of a prompt response for a CLAQUA
item is presented in Figure 1. That the example
given does not require clarification is well illus-
trated by the prompt response elicited by Prompt2,
while the Prompt1 response fails to target the task.
The two prompts differ in the level of detail of the
task instruction.

Figure 1: Example for a single-turn GPT-3.5 prompt
response. Prompted with Prompt2, it shows an explana-
tion annotated as correct, while with Prompt1, we find
a deviation of focus in the response.

We conducted fine-grained manual evaluation
for 100 randomly selected samples from the single-
and multi-turn test sets each and annotated them ac-
cording to whether the model generated a plausible

3https://learn.deeplearning.ai/
chatgpt-prompt-eng/
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explanation (i.e., whether the reasoning provided
by the model corresponds to the label) and whether
the output includes any hallucinations, omissions,
incoherence or focus-deviation. Note that the labels
are not mutually exclusive and it is possible to have
some overlap between them, e.g., omissions may
lead to increased incoherence and hallucinations
can result in focus-deviation. We computed the
inter-annotator agreement on the single-turn test set
and observed high agreement for the explanation-
based evaluation: 0.82 Cohen’s κ for Prompt1 and
0.75 for Prompt2. However, the inter-annotator
agreement on the fine-grained errors was consider-
ably lower, ranging from 0.31 to 0.52 Cohen’s κ
that shows the intrinsic difficulty of the task.

3.1.3 Prompt Tuning
Another approach to make use of the capabilities
of PLMs is prompt tuning, where the downstream
task is cast as a language modelling task (Vu et al.,
2022). Each task example in this setting typically
has a context and a desired completion (Brown
et al., 2020), here the conversation turns and the
entity descriptions with a binary prediction for clar-
ification need. In this work, we explored two strate-
gies, as identified by Liu et al. (2023): Frozen-
LM Prompt Tuning, where the prompt parameters
are updated while the LM parameters stay frozen
and Prompt+LM Tuning, where the parameters
of the prompt are updated together with the LM pa-
rameters. We used OpenPrompt framework (Ding
et al., 2022) and experimented with T5 (Raffel et al.,
2020), GPT-24 (Radford et al., 2019), BERT and
RoBERTa . Input and truncation strategy follow
the fine-tuning experiments. We optimized the hy-
perparameter settings on the development set and
varied the number of additional soft tokens from
0 to 100. The results reported in Section 4.4 were
achieved with the best performing configuration
for each prompt. All models were tuned for three
epochs.

4 Results and Discussion

4.1 Baseline

The clarification identification baseline with the
models from Xu et al. (2019) was reproduced,
showing the Transformer scores in Table 2. The
difference between our baseline scores and (Xu
et al., 2019) can be attributed to the smaller size
of the published single-turn data and the additional

4The latest GPT-model available on Huggingface.

pre-processing we implemented to make sure that
none of the truncated entity spans is missing from
the input.

4.2 Fine-tuning

Table 2 shows a comparison of the clarification
identification results from fine-tuning different
models from the BERT-family. We use the term
“F1” to refer to the macro-averaged F1 score.

Model Data Acc F1
BERT Single 0.884 0.881 ± 0.006
RoBERTa Single 0.896 0.893 ± 0.009
AlBERT Single 0.775 0.758 ± 0.021
DistilBERT Single 0.873 0.869 ± 0.004
Xu et al. Baseline Single - 0.811 ± 0.002
BERT Multi 0.928 0.928 ± 0.016
RoBERTa Multi 0.952 0.952 ± 0.023
AlBERT Multi 0.737 0.737 ± 0.044
DistilBERT Multi 0.916 0.916 ± 0.032
Xu et al. Baseline Multi - 0.727 ± 0.027

Table 2: Fine-tuning performance for clarification iden-
tification. Results are averaged over three model runs
and shown with standard deviation.

The results show that the classifier built with
RoBERTa performs best for both single- and multi-
turn data: The best results for clarification iden-
tification are an F1-score of 89.3% on the single-
turn and 95.2% on the multi-turn data. The scores
comprehensively beat the reproduced baseline with
a Transformer trained from scratch, showing that
the use of the pre-trained models from the BERT-
family is of benefit for this task and data. However,
the results also show that the choice of the specific
model from the BERT-family makes a remarkable
difference in task performance.

A possible explanation for the differences in
results can be made based on the model sizes.
RoBERTa, the best-scoring model on the task,
has the highest number of parameters (125M) and
the task performance gradually decreases with the
model size which is consistent with the previous
findings (Devlin et al., 2019; Hernandez et al.,
2021). In contrast to the baseline, the PLMs show
better results for the multi-turn data than for single-
turn, with all models except for AlBERT. A possi-
ble reason could be the difference in train dataset
size (since the multi-turn one is twice as large as
single-turn, see Table 5). Another explanation was
proposed by Xu et al. (2019) and it is based on
the idea that multi-turn conversations include more
context, which can help the models to better cap-
ture the entity information.



4.3 Manual Prompt Engineering
The performance of a manual prompt engineer-
ing approach for clarification identification with
GPT-3.5 is shown in Table 3. For each item, we
evaluated whether GPT-3.5 predicted the correct
class label (e.g. the response “Yes, clarification
is needed” corresponds to the positive class), re-
sulting in F1-scores. Further, for each item where
the class was correctly predicted by the model, we
annotated whether the model-generated response
for why this item needs clarification (or not) can be
categorised as correct from a human perspective.

Prompt Data Acc F1 Explanation
Prompt0 Single 0.48 0.40 -
Prompt1 Single 0.41 0.57 22.5%
Prompt2 Single 0.39 0.40 56.5%
Random Baseline Single 0.46 -
Prompt0 Multi 0.56 0.27 -
Prompt1 Multi 0.52 0.68 9.6%
Prompt2 Multi 0.48 0.56 30.6%
Prompt3 Multi 0.47 0.40 41.3%
Random Baseline Multi 0.53 -

Table 3: GPT-3.5 clarification identification results for
single- and multi-turn data, showing accuracy, F1-score
and the amount of model-generated explanations anno-
tated as correct.

With the best single-turn F1-score at 57% and
multi-turn at 68%, GPT-3.5 is not able to beat the
Transformer baseline introduced in Section 4.2.
Furthermore, we find that the manual prompting
results scored by GPT-3.5 barely beat a random
uniform baseline accuracy on the task (see Table
3). However, as judged by human evaluation, the
model can generate increasingly correct explana-
tions for why an item needs clarification when pro-
vided with an informative prompt (such as Prompt2
or Prompt3, see A.3).

While the number of correct explanations grows
with more elaborate prompts, the results show a
lot of room for improvement. For the single-turn
sample, the highest number of correct explanations
is 56.5%, for multi-turn 41.3%, indicating that the
single-turn data can be better processed by GPT-3.5.
Figure 2 shows, for each prompt, the percentage
of responses with: incoherence, omission, hallu-
cination and focus-deviation. The categories are
not mutually exclusive, a response may include
several phenomena at once. The evaluation shows
that the high amount of focus-deviations can be re-
duced considerably by providing more informative
task instructions in the prompt. However, the num-
ber of hallucinations, omissions and incoherence

Figure 2: Percentage of GPT-3.5 responses showing
focus-deviation, hallucination, omission and incoher-
ence for single- and multi-turn data with Prompt1-3.

grows with more informative prompts (except for
incoherences in multi-turn responses, which can be
reduced with Prompt3).

We also found that prompting with GPT-3.5 can
point out cases where the entity descriptions are
uninformative, e.g. just consisting of links. Cases
like this can occur especially when the underlying
KB is partly constructed automatically.

4.4 Prompt tuning

The clarification identification results with a
prompt tuning approach are shown in Table 4. The
results were scored with the Prompt+LM tuning
strategy, since it became apparent that this leads to
much better results for clarification identification
on CLAQUA than Frozen-LM Prompt Tuning. Pre-
liminary results with T5 showed that freezing the
LM and tuning only the prompt results in a huge
performance drop (of around 30% in accuracy and
50% in macro F1-score, even when provided with
a longer training time of 10 epochs).

Model Data Acc F1
T5 Single 0.888 0.885
GPT-2 Single 0.868 0.864
BERT Single 0.877 0.875
RoBERTa Single 0.896 0.894
T5 Multi 0.964 0.964
GPT-2 Multi 0.949 0.949
BERT Multi 0.981 0.981
RoBERTa Multi 0.978 0.978

Table 4: Prompt tuning performance for clarification
identification, comparing different PLMs. The results
were obtained with the best-performing prompt in each
case (for details on the prompts, see A.4).

For the single-turn data, the best result was
achieved when tuning RoBERTa, showing an F1-
score of 89.4%. For the multi-turn data, BERT
scores the best results with 98.1% F1-score. All
models perform better on the multi- than on the
single-turn data, with a difference of almost ten per-



cent between the best results. Adding 50 tunable
soft prompts was beneficial for task performance.
Regarding the prompt formulation and using hard
vs. soft prompts, no clear pattern emerged which
confirms the findings of inconsistent model perfor-
mance when using manual prompts as reported by
Zhao et al. (2021).

5 Conclusion

Our comparative analysis of different approaches
shows that LM fine-tuning and Prompt+LM tun-
ing lead to good task performance. The best clar-
ification identification results on CLAQUA are
achieved with a joint LM and prompt tuning ap-
proach. The results indicate that the linguistic
knowledge gained from pre-training can be lever-
aged with Transformer-based LMs, modelling the
clarification identification task with only the con-
versation context and entity text descriptions.

For future work, we consider the use of various
other models, for example DeBERTa (He et al.,
2020) or ELECTRA (Clark et al., 2020). Other
promising research directions include: (1) gener-
ating clarification questions and joint modeling of
clarification identification and generation, (2) con-
ducting a user study to investigate how users react
to under- and over-represented clarification ques-
tions in dialogue and (3) analysing to what extent
state-of-the-art dialogue systems can benefit from
explicit clarification question identification.

Manual prompt engineering with GPT-3.5 was
not competitive in terms of clarification identifi-
cation scores. However, with informative prompt
instructions, manual prompt engineering can be
used for deeper analysis of the interaction between
context and entity information and the reasoning
process for why user questions need clarification
or not. Even though prompt responses leave room
for improvement, they show a direction worth ex-
ploring further.
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A Appendix

A.1 CLAQUA Corpus

CLAQUA Single-Turn
Positive Negative Total

Train 3,507 6,592 10,099
Dev 431 422 853
Test 503 672 1,175
Total 4,441 7,686 12,127

CLAQUA Multi-Turn
Positive Negative Total

Train 12,173 8,289 20,462
Dev 372 601 973
Test 384 444 828
Total 12,929 9,334 22,263

Table 5: Statistics of the CLAQUA corpus as found in
the released corpus version on Github.

A.2 Fine-tuning Experiments

Several classifier architectures and hyperparameter
configurations were tested. Experiments include
feed-forward neural network architectures consist-
ing of one, two and three hidden layers on top of the
Transformer output and test ReLU and Tanh activa-
tions. The whole model, including the Transformer
layers, was trained, comparing three different learn-
ing rates (2e-5, 3e-5 and 5e-5, as recommended
for fine-tuning by Devlin et al. (2019)) and two
batch sizes (16 and 32). The models were each
trained for 10 epochs, picking the best model on
the validation data for test data evaluation based on
macro-averaged F1 score.

A.3 Manual Prompt Engineering
Experiments

A.3.1 Prompts
For the manual prompt engineering approach, the
following prompts were used:
Prompt0 is a simple prompt asking for a binary
answer, either “yes” or “no”, without explanation.
Instruction: “Does the following user question to a
knowledge-based question answering system need
a clarification request or not? Answer with ‘yes’ or
‘no’.”
Data: The input corpus items are given in form of
each sub-item (context and entity descriptions), in
the prompt indicating the structure. For the multi-
turn data, the context is split between previous and
current turn, providing them separately.

Prompt1 asks for classification as well as expla-
nation. The prompt is the same for single- and
multi-turn.
Instruction: “Does the following user question to a
knowledge-based question answering system need
a clarification request or not and why?”. Data: The
corpus items are given as a concatenation of the
context and the two entity descriptions, without in-
dicating the structure in the prompt. The multi-turn
context is provided as concatenation of previous
turns and current turn.
Prompt2 provides a detailed task instruction.
When providing the corpus item, it splits context
and entities explicitly. The prompt formulation is
shown without formatting:
Instruction: “Your task is to determine whether the
following user question to a knowledge-based ques-
tion answering system needs a clarification request
or not. To fulfill the task, do the following: First,
consider the context given in the user question. The
knowledge base holds two entities, entity1 and en-
tity2, to which this user question could refer to.
Read the text descriptions of both entities. There
are two options: If the user question can be an-
swered for only entity1 or for only entity2, the user
question is not ambiguous and does therefore not
need a clarification request. If the user question can
be answered for both entities, it is an ambiguous
question and needs a clarification request. By read-
ing the descriptions of both entities, decide whether
the user question needs a clarification request or
not. State whether the user question needs a clari-
fication request or not. If the user question needs
a clarification request, state why the question can
apply to both entities. If it does not need a clarifica-
tion request, state why the question can only apply
to one of the entities and which.”
Data: The input corpus items are again given in
form of each sub-item, in the prompt indicating
the structure: context: [...] + entity1
description: [...] + entity2 description:
[...]. The multi-turn context is given as concate-
nation of previous turns and current turn.
Prompt3 is a modification of Prompt2 tailored to
the multi-turn data. It splits previous and current
turns in the input and also mentions that the am-
biguity arises from the entities mentioned in the
previous turn.

A.3.2 Prompt Response Phenomena
The prompt responses were manually annotated
regarding for the presence of the following phe-



nomena (which are not mutually exclusive). An
example of each phenomenon is given below:
Hallucination

Entity2 description: “The Magic Finger
is a 2013 theater production of the play by
David Wood.”

Prompt response: “Entity2 is a theater pro-
duction of the play and does not have a cover
artist.”

This is an example of hallucination. That the play
does not have a cover artist is not supported by the
entity description.
Omission

Context: “On the software license of VTune,
what is stated?”

Entity1 description: “VTune puts the
wealth of Intel’s hardware knowledge to work
for analyzing and optimizing your software’s
performance. This developer’s utility features
multiple perspectives–you can zoom in or take
a bird’s-eye view using static or dynamic code-
analysis functions. Once VTune spots the
inefficiencies, it sends in the VTune Coach
to suggest solutions. This latest version con-
tains full support for Java. This demo is a
full-featured, 30-day trial.”

Entity2 description: “VTune Amplifier
performance profiler is a commercial applica-
tion for software performance analysis of 32
and 64-bit x86 based machines. It has both a
GUI (graphical user interface) and command
line and comes in versions for Linux or Mi-
crosoft Windows operating systems. An op-
tional download lets you analyze the Windows
or Linux data with a GUI on OS X. Many
features work on both Intel and AMD hard-
ware, but advanced hardware-based sampling
requires an Intel-manufactured CPU.”

Prompt response: “The user question does
not need a clarification request. The ques-
tion can only apply to Entity2 because the
description of Entity1 does not mention any-
thing about a software license.”

This prompt response shows an omission of facts.
The argument for no clarification is based on the

prompt response stating that the description of En-
tity1 would not mention a software license. It sug-
gests that the description of Entity2 does mention
a software license, which is not the case.
Incoherence

Prompt response: “Entity2, Chris Robin-
son, is described as an American actor, screen-
writer, and film director, but there is no men-
tion of him directing any movies. Therefore,
the user question can only refer to Entity1.”

This response shows incoherence in reasoning. In
the response it is mentioned that the second entity
is described as “film director” and at the same time
it is argued that there would be no mention of them
directing any movies.
Focus-deviation:

Prompt response: “Yes, the user question
needs a clarification request. The question
is not clear about what specifically they are
asking for in [user question]. It mentions two
different entities named [entity name]. The
system needs to ask for clarification on which
[entity name] the user is referring to.”

Generic responses as the one shown here are an
example of focus-deviation. They fail to target the
task being addressed, namely to explain whether a
user question in a specific context needs a clarifica-
tion request or not with respect to the given entities
in the KG.

A.4 Prompt Tuning Experiments
For the prompt tuning approach, the following
prompts were used:

• Prompt1 consists of the corpus item and soft
tokens. The question “Does this context need
clarification?” is initialized to the specified
tokens which are then tuned. It is followed by
a mask token which the model must fill with
a clarification identification decision.

• Prompt2 consists of the corpus item, soft to-
kens and a textual template in the form of
hard tokens for the question of whether the
provided context needs clarification. It has the
same structure as Prompt1, the only difference
being whether soft or hard tokens are used.

• Prompt3-7 consist of slight modifications of
Prompt2 regarding the hard tokens. They mod-
ify the prompt formulation by mentioning the



knowledge base, the two entities or rephrasing
the task into an ambiguity problem.
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