

Inside an Open Source Software Community:

Empirical Analysis on Individual and Group Level

Wolfgang Maass
=mcminstitute, University of St Gallen, CH-9000 St Gallen

wolfgang.maass@unisg.ch

Abstract

An established Open Source Software community
(Apache Cocoon) was explored using an online
questionnaire about demographic data and individual
and group-related factors. Individual factors
encompassed forms of contributions, motivation,
expertise and knowledge. Role structures, expectations
towards other members, trust and collaboration issues
were analysed at group level. More than 60% of the
developer community completed this questionnaire.
Results provide a valuable basis for deeper
understanding of knowledge sharing, collaboration and
innovation processes in distributed work groups.

1. Introduction

Open Source software (OSS) communities have

recently attracted attention for the impact they have on
the global software market. This development especially
enlivened research on the organisation and motivational
structure of individuals (e.g. [1], [2], [3], [4], [5]).

OSS communities are virtual work groups consisting
of members with skills in software development. They
work in temporary, culturally diverse, geographically
dispersed, electronically communicating work groups
([6]).

In contrast to commercial software vendors, members
can freely join OSS communities and are unrestricted in
their contributions. Virtual work groups have been
investigated within given contexts ([7], [8]) but,
compared to Linux or Apache communities, these groups
have been rather small. Software development by virtual
work groups is a long-standing topic, however if
compared to larger OSS communities these studies also
mainly focused on smaller projects [9]. In this sense, OSS
communities provide unique opportunities for studying
virtual work groups and distributed software
development.

On one hand, the communication and collaboration of
OSS communities are highly transparent. On the other

hand, global distribution of community members and lack
of job contracts with firms make it difficult to investigate
communities on an individual level. Therefore most
empirical studies on OSS communities concentrate on
secondary logging information such as that provided by
mailing lists, IRC chat logs and code repositories.

As a prerequisite for understanding how OSS
communities communicate and collaborate, we need
better knowledge of their beliefs, goals, attitudes, skill
sets, communication and collaborative behaviour. Based
on a detailed online questionnaire, the Apache Cocoon
community was analysed at individual and group level.
More than 60% of the developer community (34 valid
responses) responded to this questionnaire.

2. Conceptual Foundations

Commercial software development rests on the ability
to allocate technical and human resources in relatively
complex organisational settings [10]. Labour is divided
into specialist groups, such as technical programming
teams, system engineering, integration/testing and project
management [11].

Globally distributed software development by virtual
teams promises the flexibility, responsiveness, lower
costs, and improved resource utilisation necessary to meet
ever-changing task requirements in highly turbulent and
dynamic global business environments [12].

Open Source Software communities provide a role
model for virtual teams that have inherited cultural,
organisational and communicational schemes from the
scientific community but then enriched and expanded the
communication and collaboration processes step-by-step.
From a psychological viewpoint, the perception of
membership in some common social identity is
constitutive for a group to exist [13]. Work groups are
groups that are focused on the generation of problem
solutions.

Any developer of OSS communities maintains a set of
collective, social, norm-oriented and reward motives [2].
However, they also have the liability to deliver

to be published:

Proc. of the 4th
Workshop on Open
Source Software
Engineering at
26th International
Conference on
Software
Engineering

(ICSE04),

Edinburgh, UK.

contributions of a given quality for which rewards are
granted in terms of gaining reputation within the
community. Contributions depend on the expertise and
skills that a developer obtains. Physical disconnection is
regarded as being a negative factor for team performance
[14]. OSS communities organically design organisational
structures that intercept this threat and the known
limitations of communication infrastructures.

Initial studies explored work group structures of OSS
communities ([2], [3], [4], [1]). In a detailed study, Hertel
et al. analysed motivational processes of members of the
Linux kernel community. This study gave first insights
into the demographic structure of parts of a community.
Members were differentiated into two groups: developer
group and interested reader group. On average,
participants worked 18.4 hours per week on Linux and
20% of the developers received a salary for their Linux
programming work. 38% were able to carry out Linux-
related programming during their regular working hours,
whereas the remaining 62% worked on Linux outside
their regular work. The Linux kernel community is
subdivided into teams ranging from two to 50 developers,
with an average of 12. Studies found that the main
motivational factors were identification factors, pragmatic
motives, norm-oriented motives, social and political
motives, hedonistic motives and motivational obstacles
related to time losses. All factors were found to correlate
positively with willingness to engage in the community,
while lack of time is the biggest obstacle. Trust, in a
limited meaning, only plays a minor role for motivation.

Established OSS communities such as Linux, Apache
or mySQL emerged from small toy projects to fully-
fledged software solutions for complex tasks.
Accordingly, developers are required to provide mature
expertise and development skills. Knowledge of members
is codified [15] by information communicated to other
members and most of all into documentation and source
code. It depends on experience gathered over time and
can be transformed into a shared experience that leads
groups of people to encode, store, and retrieve relevant
information together [16].

At group level, the organisation gives a formal
structure to a community. OSS communities typically
provide simple and clear-cut organisational structures.

Structural conditions for OSS organisations include a
general culture, delegative and participative leadership
principles, modular project structure, parallel release
policy, motivating credit policy, and clear rules and
norms [2]. OSS communities typically grow around an
individual or a small team ([17], [18]).

The analysis of OSS communities in respect of their
work group organisation is still an open field. Recent
studies on open source software communities focus on
the evaluation of indirect historical data, as provided by
mailing list repositories and Concurrent Versions System

(CVS) entries ([1], [19]). The question remains as to
whether organisations of OSS communities provide a new
model of business organisation [20].

Members in communities communicate and
collaborate on the basis of mutual expectations, which in
turn generate mutual trust or suspicion [21]. Several
factors have been suggested to facilitate the development
of trust: (1) shared social norms, (2) repeated interactions,
(e.g., [22]), (3) anticipation of future association [23], and
(4) physical proximity [24].

In respect of their communication, virtual work
groups, and OSS communities in particular, are restricted
in the exchanges considered to be relevant for building
trust, warmth, attentiveness, and other interpersonal
bonds within teams [25].

Software development can be described as a
collaborative problem-solving activity where success is
dependent upon knowledge acquisition, information
sharing and integration, as well as the minimisation of
communication breakdowns [3].

3. The Present Study

In order to get a broader empirical basis for research
on virtual teams, we searched for an OSS community that
possesses important attributes; such as whether it is well-
established (at least 3 years), sufficiently large but not to
large (50-100 developers), still in its growing phase, and
with a vision on its software system that is relevant for
business usage. Therefore we selected the Apache
Cocoon community, which was established in 1998,
includes some 40-60 active developers and has gained
growing attention from firms for its architecture on XML
publishing (cocoon.apache.org).

The questionnaire targeted (1) demographic data, (2)
individual factors (contributions, motivation, expertise),
and (3) group factors (organisation, mutual expectations,
trust, collaboration, communication channels) as
described in the previous paragraph.

4. Method

Data was gathered by an online questionnaire that was

developed in cooperation with leading members of the
Cocoon community in September 2003. The
questionnaire was actively communicated by leaders at
Cocoon’s first get-together in October 2003, which was
the reason why 42 responses (34 valid) were given,
representing more than 60% of the developer community.

This questionnaire was designed to receive a broad
understanding of the community on which further
empirical studies can be designed. The response rate was
surprisingly high even though the questionnaire contained
42 questions.

5. Results

5.1. Demographic information

The average age of Cocoon developers is 31.2 years

(SD 6.17 years). 73.5% are from Europe, 20.6% from the
USA and about 3% from Asia and Australia. Developers
have become aware of Cocoon in three phases, showing
characteristics of the diffusion function: 26.5% before
1999 (initialisation), 35.3% in 2000 (growth), 38.2%
from 2001 to present date (stabilisation). On average,
they started to contribute 1.6 years later (0.756, p <0.01)1.

On average, developers invest 3.1 hours per week in
Cocoon (only 16% of the investment of Linux kernel
developers [9]). Assuming a total number of developers
of 50, this means a total investment of 150 hours per
week, about 600 hours per month and 6,600 hours per
year, which equals about 3.75 person years. According to
the responses, 74% are paid by official jobs (Linux kernel
only 38% [9]). 23.5% of Cocoon developers are self-
employed, with a significant correlation to conducting
business with Cocoon (.502, < 0.01). More than 60% of
these people receive between 80-100% of their revenues
from business with Cocoon.

5.2. Individual factors

The production fingerprint of an OSS community is

given by its distribution of delivery types, such as
patches, modules, problem reports, documentation, and
ideas.

Members were asked which type of contribution they
deliver frequently, periodically, rarely, or never. Only 6%
report frequently and 20.6% offer patch contributions
periodically, which is consistent with our analysis of CVS
activities in Cocoon. The majority indicate that they
rarely or never contribute patches. Modules are larger-
scale conceptual and functional units consisting of a set of
files. Almost 12% indicate that they contribute complete
modules on a periodic basis. The correlation analysis
shows an expectedly strong, positive relationship between
patch and module contribution (0.501, < 0.01). As a rule,
modules are provided by members who joined the
community early.

The results show that 25% of all developers are active
contributors of problem reports. 26.5% of all members
write documentation frequently or periodically, which is
an astonishingly high percentage. A significant
relationship exists between people who write patches and
documentation (0.39, < 0.05).

1 based on Pearson correlations with a two-tailed
significance test.

29.4% of members report frequent or periodic
contribution of ideas, which significantly correlates with
the activity of contribution of modules, documentation,
and problem reports. Members who contribute ideas are
those who are responsible for modules (0.709, < 0.01)
than mere patches (0.364, < 0.01), which supports the
view that ideas influence the overall architecture built on
the basis of modules controlled and delivered by the same
people.

Several significant correlations exist between
contribution types, which indicates that active developers
contribute anything from patches, modules, problem
reports, ideas and even documents. People providing
patches, modules and ideas tend to provide
documentation to a lesser extent. Documentation is
provided more by people who generate problem reports.

The motivation for participation in OSS communities
is one of the key issues investigated by recent research
[2]. Results from the Cocoon community support these
findings showing that the main motivation is to learn new
technologies (79.4%). 52.9% report that public utilisation
is a main driver for their participation. Data shows a
slightly negative correlation between personal branding
and public utilisation, indicating a distinction between
these two groups.

Teams of knowledge workers are inherently resistant
to bureaucratic rationalisation and control [26]. Routine
work and organisational issues dominate and are
perceived to be a distraction from software engineering
work. A hypothesis is that OSS communities are
attractive to developers because routine work is omitted
and the organisation is reduced to a minimum. This
hypothesis can be supported by the result that 44.1% see
self-realisation as a main driver for their participation.
Further research is necessary for analysis of this
hypothesis.

In summary, the analysis of motivational factors
supports the view that people participate in the Apache
Cocoon community because they want to learn new
technologies from and with people with similar interests.
Cocoon can be seen as a global family of skilled software
developers. Results support the initial hypothesis that
Cocoon is a global knowledge-sharing network.

Results show 65.7% of all members have a
background in computer science and 24% in electro-
engineering or general engineering. The questions
regarding educational background show that 70.6%
possess or are working on a university degree, while
14.7% possess a degree from an advanced technical
college. 14.7% see themselves as self-educated, which
represents those with a non-technical or at least a non-IT
background.

Years of experience represent an important factor for
professional programming. On an individual level it could
be shown across various domains that it takes about 10

years to become a domain expert [27]. On average,
Cocoon developers have 12.2 years of experience. Given
the average age of 31.2, this means that Cocoon
developers started programming at the age of 19. This in
turn correlates with the beginning of university study.

Age and years of implementation correlate (0.787, <
0.01). Therefore, Cocoon can be separated into a cluster
of programmers above 36 years of age and with more
than 17 years of experience and a cluster ranging from 19
to about 31 years with 2 to 13 years of programming
experience. It can be assumed that these two groups differ
in their preferences regarding Cocoon. The correlation
between age and the motivation to learn new skills (-
0.339, < 0.05) and self-realisation (-0.414, < 0.005) is
negative, which indicates that older Cocoon member are
less interested in learning new skills or self-realisation
than younger members.

5.3. Group factors

The study shows that 37% see themselves as “lurkers”

who currently watch activities in the developer
community and 71.4% see themselves as developers. The
overlapping 8.4% of people watching and contributing
can be interpreted as people who are at the edge of actual
contribution. 34.3% hold the status of a committer, who
dispose of the right to check in changes into CVS and
31.4% the status of a member of the program
management committee (PMC). 93.6% of all committers
are also members of the PMC.

On average, Cocoon members expect advanced
expertise from other members. Members who report that
they participate in order to learn new technologies (-
0.394, < 0.05) and for self-reputation (-0.394, < 0.05)
tend expect lower levels of expertise. Other correlations
are rarely visible, so that as a new assumption we can
assume that the expected level of expertise is an
independent and basic variable.

As already indicated, not all members implement
patches or modules but instead provide documentation,
ideas, problem reports and others. Therefore we
specifically asked for expectations of programming skills.
Programming is considered the primary skill enabling an
OSS community to deliver its primary product. This
hypothesis is supported by the significant correlation
between the expected level of general expertise and
programming skills (0.874, < 0.01). In general, the
expectation of programming skills is almost identical to
that of general expertise. Hence, we can conclude that
Cocoon members either seem to perceive their ability to
program as their most important and dominant skill or
any kind of contribution on an advanced level.

In general, 48.6% of all members perceive technical
architecture as the most difficult lesson to learn. 20% find
it hard to learn the rules of communication and 20% the

rules of interaction. This supports the view that the
biggest obstacle is also the biggest challenge because on
one hand members have the main motivation to improve
their technical skills and on the other they have a
technical construct that challenges their skills.

28% of all members respond that they find it easiest to
learn rules of communication or the “who’s who”.
Together with the indication that people and their roles
are also learned quite easily, it can be concluded that
members learn the organisation and communication of the
Cocoon community fast.

In respect of trust, on average members highly trust
one another (average 2.6 on a scale from 1 [blind trust], 2
[very high], 3 [high], 4 [medium], 5 [low] and 6 [no
trust]). Trust correlates with delivery of patches (0.415, <
0.05), delivery of modules (0.401, < 0.05), delivery of
problem reports (0.380, < 0.05), delivery of
documentation (0.411, < 0.05), and delivery of ideas
(0.491, < 0.01). In contrast to users, Cocoon committers
(0.514, < 0.01), PMC members (0.475, < 0.01), Apache
Foundation members (0.364, < 0.05) are positively
adjusted regarding trust towards other members. In
summary, this presents a positive picture of trust relations
between members. Users and lurkers show negative trust
relations towards community members, developers tend
to be positively biased, and from the status of a committer
upward, members demonstrate very high trust in other
members. Hence, in the Cocoon community trust seems
to be derived from general work relationships rather than
from physical interaction, which contrasts Handy’s view
that trust requires physical interaction (Handy 1995).

On average, Cocoon members claim to collaborate
with 2.1 other Cocoon members, with a clear tendency to
work with fewer people rather than with more.
Committers (0.524, < 0.01), PMC members (0.566, <
0.01) and Apache Foundation members (0.560, < 0.01)
significantly work with more members than regular
developers or users (0.288). Significant correlations exist
to developers who contribute modules (0.521, < 0.01),
contribute documents (0.554, < 0.01), and contribute
ideas (0.597, < 0.01). When correlated with the main
contributions this pattern changes: significant correlations
exist to discussions (0.467, < 0.01), votes (0.509, < 0.01),
requirements (0.393, < 0.05). Also positive is the
correlation with trust in other members (0.456, < 0.01)
which indicates that the more people a member works
with the higher is his or her trust into them. Furthermore,
the more hours a member spends working for Cocoon the
more people he interacts with (0.377, < 0.01). Finally it
was found that the more revenue a member makes with
Cocoon the more people he or she interacts with (0.512, <
0.01).

6. Implications

Work group analysis of OSS communities is an
important but yet unexplored field. This study shows that
mature OSS communities are able to attract high-profile
experts. In contrast to functionally divided organisation of
commercial software development projects, Cocoon
developers account for almost any type of contribution,
such as ideas, problem reports, patches, and modules. The
motivation is largely determined by skill improvement
and altruism (correlating with [2]). Developers expect
other members to be highly skilled and experienced. They
trust in other members to a large extent and perform their
work in small teams or alone (correlates with “self-
efficacy” [2]). This indicates that members perceive
themselves as experts for a specific module, which will be
valued by other members for its contribution to the
overall system.

Various research questions can be derived from the
findings of this empirical study. Further research is
required on how individual knowledge is transmitted to
other members based on limited communication channels
and how it is transformed into transactive knowledge.
These exchange processes depend on how members
appraise each other and how this attitude evolves over
time. Trust is a key concept for further analysis of related
questions. Comparisons with centralised software
development organisations will provide fruitful insights
on performance differentials between centralised and
virtual group organisations. From an economic point of
view this will nurture research on globally distributed
innovation and design processes.

7. References

[1] S. Koch and G. Schneider, “Effort, co-operation
and co-ordination in an open source software project:
GNOME”, Information Systems Journal, vol. 12, pp. 27-
42, 2002.

[2] G. Hertel, S. Niedner, and S. Herrmann,
“Motivation of software developers in open source
projects: An internet-based survey of contributors to the
Linux kernel”, Research Policy, vol. 32, pp. 1159-1177,
2003.

[3] G. von Krogh, S. Spaeth, and K. R. Lakhani,
“Community, joining, and specialization in open source
software innovation: a case study”, Research Policy, vol.
32, pp. 1217-1241, 2003.

[4] L. Y. Moon and L. S. Sproull, “Essence of
Distributed Work: The Case of the Linux Kernel”, First
Monday, vol. 5, 2000.

[5] E. von Hippel, “Innovation by user communities:
learning from open-source software”, Sloan Management
Review, vol. 42, pp. 82-86, 2001.

[6] A. L. Kristof, H. P. Brown, and K. Sims Jr.,
“The virtual team: A case study and inductive model”, in
Advances in Interdisciplinary Studies of Work Teams:
Knowledge Work in Teams, vol. 2, M. M. Beyerlein, D.
A. Johnson, and S. T. Beyerlein, Eds. Greenwich, CT:
JAI Press, 1995, pp. 229-253.

[7] M. K. Ahuja, D. F. Galleta, and K. M. Carley,
“Individual Centrality and Performance in Virtual R&D
Groups: An Empirical Study”, Management Science, vol.
49, pp. 21-38, 2003.

[8] T. L. Griffith, J. E. Sawyer, and M. A. Neale,
“Virtualness and Knowledge in Teams: Managing the
Love Triangle of Organizations, Individuals, and
Information Technology”, MIS Quarterly, vol. 27, pp.
265-287, 2003.

[9] D. B. Walz, J. J. Elam, and B. Curtis, “Inside a
software design team: knowledge acquisition, sharing,
and integration”, Communications of the ACM, vol. 36,
pp. 62-77, 1993.

[10] R. W. Zmud, “Management of Large Software
Development Efforts”, MIS Quarterly, vol. 4, pp. 45-55,
1980.

[11] H. P. Andres, “A comparison of face-to-face and
virtual software development teams”, Team Performance
Management, vol. 8, pp. 39-48, 2002.

[12] A. Mowshowitz, “Virtual organization”,
Communications of the ACM, vol. 40, pp. 30-37, 1997.

[13] J. C. Turner, “Towards a cognitive redefinition
of the social group”, in Social identity and intergroup
relations, T. H., Ed. Cambridge, England: Cambridge
University Press, 1982, pp. 138-161.

[14] C. Handy, “Trust and the virtual organization”,
Harvard Business Review, vol. 73, pp. 40-50, 1995.

[15] B. Kogut and U. Zander, “The Imitations and
Transfer of New Technologies”, Organization Science,
vol. 3, pp. 383-397, 1990.

[16] D. Wegner, “Transactive memory: A
contemporary analysis of the group mind”, in Theories of
group behavior, G. Mullen and G. Goethals, Eds. New
York: Springer, 1986, pp. 185-208.

[17] A. Mockus, R. T. Fielding, and J. D. Herbsleb,
“A Case Study of Open Source Software Development:
The Apache Server”, presented at Proc. of the 22nd
International Conference on Software Engineering,
Limerick Ireland, 2000.

[18] C. Robottom Reis, “An Overview of the
Software Engineering Process and Tools in the Mozilla
Project”, presented at Workshop on Open Source
Software Development, Newcastle upon Tyne, 2002.

[19] G. von Krogh and E. von Hippel, “Special issue
on open source software development”, Research Policy,
vol. 32, pp. 1149-1157, 2003.

[20] J. Lerner and J. Tirole, “The Simple Economics
of Open Source”, National Bureau of Economic
Research, Cambridge, Working Reports 7600, 2000.

[21] M. Deutsch, “Trust and Suspicion”, The Journal
of Conflict Resolution, vol. 2, pp. 265-279, 1958.

[22] J. L. Bradach and R. G. Eccles, “Markets versus
hierarchies: From ideal types to plural forms”, Annual
Review of Sociology, vol. 15, pp. 97-118, 1989.

[23] W. W. Powell, “Neither market nor hierarchy:
Network forms of organization”, Research in
Organizational Behavior, vol. 12, pp. 295-336, 1990.

[24] B. Latane, J. H. Liu, M. Nowak, M. Benovento,
and L. Zheng, “Distance matters: Physical space and
social impact”, Personality and Social Psychology
Bulletin, vol. 21, pp. 795-805, 1995.

[25] S. L. Jarvenpaa and D. E. Leidner,
“Communication and Trust in Global Virtual Teams”,
Organization Science, vol. 10, pp. 791-815, 1999.

[26] M. Reed, “Organizational theorizing: a
historically contested terrain”, in Handbook of
Organization Studies, S. R. Clegg, C. Hardy, and W. R.
Nord, Eds. London: Sage, 1996.

[27] K. A. Ericsson, R. T. Krampe, and C. Tesch-
Römer, “The role of deliberate practice in the acquisition
of expert performance”, Psychological Review, vol. 100,
pp. 363-406, 1993.

